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Abstract

With the global war on terrorism, the nature of military warfare has changed

significantly. The United States Air Force is at the forefront of research and de-

velopment in the field of intelligence, surveillance, and reconnaissance that provides

American forces on the ground and in the air with the capability to seek, monitor, and

destroy mobile terrorist targets in hostile territory. One such capability recognizes

and persistently tracks multiple moving vehicles in complex, highly ambiguous urban

environments.

This thesis investigates the feasibility of augmenting a multiple-target tracking

(MTT) system with hyperspectral imagery. Feature-aided tracking methods have

used features obtained from other sources such as panchromatic video, infrared, and

radar imagery, but relatively few have examined hyperspectral data for tracking small

targets. This research effort evaluates the usefulness of hyperspectral data as a feature

set for the purpose of disambiguating targets in ambiguous situations. Classification

of hyperspectral data is performed using fuzzy c-means and the self-organizing map

clustering algorithms for remote identification of moving vehicles.

Results demonstrate a resounding 29.33% gain in performance from the baseline

kinematic-only tracking to the hyperspectral-augmented tracking. Through a novel

methodology, the hyperspectral observations are integrated in the MTT paradigm.

Furthermore, several novel ideas are developed and implemented—spectral gating of

hyperspectral observations, a cost function for hyperspectral observation-to-track as-

sociation, and a self-organizing map filtering method. It appears that relatively little

work in the target tracking and hyperspectral image classification literature exists

that addresses these areas. Finally, two hyperspectral sensor modes are evaluated—

Pushbroom and Region-of-Interest. Both modes are based on realistic technologies,
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and investigating their performance is the goal of performance-driven sensing. Perfor-

mance comparison of the two modes can drive future design of hyperspectral sensors.
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Hyperspectral-Augmented Target Tracking

I. Introduction

The 2003 publication of Air Force Doctrine Document 1 (AFDD-1) states that

“...the Air Force is the major operator of sophisticated air- and space-based

intelligence, surveillance, and reconnaissance (ISR) systems and is the Service most

able to quickly respond to the information they provide...” [1]. Because the United

States Air Force (USAF) is committed to be the leader in the military application of

ISR technology, it is continually pursuing new research and development in this area.

When the USAF has access to vital, timely, and accurate information, the United

States military has an unparalleled operational advantage over its enemies.

In the late 20th Century, the nature of military warfare changed significantly.

Adversaries resorted to terrorism and urban warfare [1]. Urban combat became less

conventional at both the operational and tactical levels. Terrorists began escalat-

ing the use of civilian vehicles instead of the camouflage military vehicles for the

transportation of combatants, as a platform to launch weapons, and as improvised

explosive devices (IED). ISR technology that recognizes and monitors these vehicles

have become essential elements of urban warfare.

According to the Strategic Appraisal, United States Air and Space Power in the

21st Century, a rapid-reaction information force can quickly establish video surveil-

lance of potentially hostile territory [21]. Essential features of such a force are Un-

manned Aerial Vehicles (UAVs) equipped with video equipment, coupled with com-

mand planes capable of gathering, editing, and instantaneously disseminating that

coverage [32]. Mobile targets remain elusive, but if researchers and engineers develop

adequate surveillance capability to locate them reliably, military forces can destroy

them easily with nuclear or conventional weapons [9]. Several research works that

address this ISR need include the following:
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• In the United States Army’s 2007 Small Business Technology Transfer Program,

the Army funded the development of algorithms for UAV ISR systems for the

purpose of tracking several types of targets in urban environments, including

human, civilian vehicles, and military targets that could exhibit highly nonlinear

motions [42].

• “In 2005, graduate students at the Air Force Institute of Technology in Ohio and

scientists at Los Alamos National Laboratories developed project Angel Fire, a

persistent city-sized surveillance program. By providing real-time imaging ca-

pabilities, IEDs and other threats to ground forces can be detected, prevented,

and/or negated. Angel Fire is particularly well suited to provide enhanced

situational awareness to forces operating in an urban environment, convoy op-

erations, or other ground operations” [14].

• The Defense Advanced Research Projects Agency (DARPA) developed an auto-

mated video-based ground targeting system for UAVs through high performance

electro-optical (EO) and infrared (IR) sensors that provide high quality data for

target identification and engagement [2].

These are only some of the numerous works that address the use of video surveillance

systems for urban warfare. Clearly, the Department of Defense (DoD) is capitaliz-

ing on video technology to enhance its capability to “track, record, and analyze the

movement of every vehicle in a foreign city” [41].

1.1 Problems with Kinematic-Only Target Tracking using Panchro-

matic Video Data

This thesis evaluates a tracking system that processes digital imagery, digitized

from an analog panchromatic video camera. After the camera presents the video

data of the imaged scene to the tracker as frames of two-dimensional imagery, the

tracker segments the imaged scene into regions of change using pixel intensity frame

differencing (based on an empirically or statistically chosen threshold). The output
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is an angular displacement between the measured target line-of-sight and the opti-

cal axis of the sensor [8]. The tracker only uses this kinematic information on the

resolved targets, which manifests in either or both dimensions of the imaged scene,

to initiate or update existing target tracks. The track algorithm, therefore, must be

robust enough to respond effectively when multiple targets go through ambiguous

situations. Otherwise, track swaps and losses occur, and track purity1 becomes de-

graded.2 Ambiguous situations are characterized by changes in the target’s velocity

(e.g., move-stop-move), obscurations in the scene, or other objects spatially close to

the target of interest. Other tracking methods have been developed to address track

swaps and losses caused by these ambiguous situations. One such method is feature-

aided tracking that utilizes extraction techniques to build a feature set for each target

of interest. Tracks are no longer just comprised of position and velocity estimates,

but they also consist of unique feature estimates. One such feature set is a track’s

hyperspectral signature.

1.2 Hyperspectral-Augmented Target Tracking

The main objective of this thesis is to determine the feasibility of using spectral

features to disambiguate targets in ambiguous situations. More specifically, this re-

search answers the following question: When augmented by hyperspectral data, is the

performance of the kinematic-only tracker in ambiguous situations improved? The

experimental results indeed show that the hyperspectral-augmented tracker outper-

forms the kinematic-only tracker. Instead of using features from video images (e.g.,

color, shape, and gradient), the hyperspectral-augmented tracker exploits the rich hy-

perspectral data of each target track. Through the target’s potentially unique spectral

response, the tracker is more successful in disambiguating closely spaced targets in

ambiguous situations.

1Track purity is the average percentage of correctly associated observations for each track.
2If track swaps occur due to close proximity, then the tracker associates each track with the

wrong target. If track losses occur (e.g., due to obscurations or closely spaced targets), then track
continuity becomes an issue.
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Figure 1.1: In a hyperspectral image cube, each pixel consists of three dimensions—
spatial dimensions x and y and hyperspectral dimension λ. The plot shows the
spectral responses, which correspond to the third dimension λ, for various background
materials in the hyperspectral image. Because of water in the atmosphere, absorption
wavelength exist (gaps in the curve) around 1400 and 1900nm.

The hyperspectral data consist of nearly 200 contiguous spectral bands, forming

a three-dimensional image cube (Fig. 1.1). Each pixel consists of two spatial dimen-

sions (x, y) and one spectral dimension (λ). The spectral dimension λ is a feature

vector consisting of a spectrum of the imaged pixel area, most notably in the visible

(VIS) and infrared (IR) areas of the electromagnetic spectrum. The detailed spectral

response of a pixel assists in providing precise target identification [45]. Furthermore,

the high spectral resolution preserves important aspects of the spectrum (e.g., shape

of narrow absorption bands) and makes differentiation of objects possible [36].

The hyperspectral-augmented target tracking system consists of three main

components: hyperspectral and panchromatic video data processing, hyperspectral

pixel classification, and kinematic-only target tracking, as shown in Fig. 1.2.
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Figure 1.2: The system elements of a hyperspectral-augmented target tracker con-
sist of three main components: hyperspectral and panchromatic video data processing
(Sec. 1.2.1), hyperspectral pixel classification (Sec. 1.2.2), and kinematic-only target
tracking (Sec. 1.2.3).

1.2.1 Hyperspectral and Panchromatic Video Data Processing. The hy-

perspectral and panchromatic video data processing3 element performs several crucial

functions. After the tracker initiates a target track (based on change detections in the

imaged scene), the data processor extracts the hyperspectral pixels likely to contain

the target of interest by commanding the hyperspectral sensor to scan the track region

bounded by the track’s propagated position and uncertainty. This bounded region is

called a hyperspectral image (HSI) chip. Finally, the data processor populates a spec-

tral library using hyperspectral measurements collected from various vehicle types and

background materials and computes the prototype vectors representing each vehicle

and background.

3This thesis document italicizes the system elements provided in Fig. 1.2 and treats each element
as a singular noun. Throughout the rest of this document, the hyperspectral and panchromatic video

data processing element will be referred to simply as a “data processor.”
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1.2.2 Hyperspectral Pixel Classification. The hyperspectral pixel classifi-

cation component consists of five elements and the spectral library. Before the data

processor extracts the HSI chip for each target track, the HSI sensor data calibration

and atmospheric correction element preprocesses the hyperspectral imagery to remove

unwanted effects due to sensor noise and the atmosphere. Spectral feature extraction4

determines the relevant dimensions of the hyperspectral data. This element is not

currently implemented in this thesis and serves as a placeholder for future efforts.

This research provides baseline work, in which all dimensions are assumed relevant.

Spectral matching and identification (ID) performs a supervised classification on the

remaining spectral features (assuming spectral feature extraction is accomplished) by

comparing the hyperspectral data of each pixel (λ) with samples for each class in

the spectral library. The class ID of the nearest sample to the hyperspectral pixel is

the identifier that disambiguates target tracks in ambiguous situations. Finally, the

spectral nearest neighbor computations element determines the nearest neighbors for

each class in order to gate hyperspectral observations.

1.2.3 Target Tracking. This research implements a target tracking approach

based on a conventional multiple-target tracking (MTT) system. The MTT system

can be divided into five functions [8]: sensor data processing and measurement for-

mation, gating computations, observation-to-track association, track maintenance, and

filtering and prediction. There is considerable overlap of the functions of these ele-

ments, but this representation provides a convenient way to describe the functions

required for an MTT system. Sensor data processing and measurement formation

identifies target detections or observations versus returns from extraneous sources,

such as potential false alarms produced by sensor noise and background clutter. The

system considers the incoming target observations for the update of existing tracks.

Gating computations is a screening mechanism that determines which observations are

valid candidates. The observation-to-track association takes the observation-to-track

4Feature extraction is a form of dimensionality reduction.
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pairings that satisfy gating requirements and determines which observation-to-track

assignments will actually be made. Track maintenance refers to the functions of track

initiation, confirmation, and deletion. Filtering and prediction incorporates the as-

signed observations and predicts the tracks ahead to the arrival time for the next

set of observations. Gating computations places gates around these predicted posi-

tions. The tracking processing cycle starts over again when the tracker receives new

kinematic or hyperspectral observations.

1.3 Research Scope

Extensive work has been accomplished in many of the functions identified in

Fig. 1.2, but not as one complete system. This research demonstrates that, by aug-

menting the kinematic-only tracking system with the targets’ hyperspectral signature,

the probability of correct identification increases significantly. So long as the classifier

correctly identifies the target, even if the kinematic-only tracker swaps target tracks,

this work achieves the urban environment tracking goal effectively. This thesis fur-

ther presents three novel ideas—spectral gating, hyperspectral observation-to-track

association, and filtering of the self-organizing map.

First, the spectral gating work develops a method for calculating the nearest

neighbors of a target class. Since relatively little work on hyperspectral-augmented

target tracking exists in the literature (see Sec. 2.1), this hyperspectral gating work is

the first of its kind. Second, the cost function used in the hyperspectral observation-

to-track association consists of a sum of weighted kinematic and spectral distances.

The weighting affects the influence of an observation’s spectral signature on the data

association. The weighting combinations are 99-1%, 50-50%, and 1-99%, in which the

first value in the combination provides the weight or level of confidence placed on the

spectral distance. Finally, a filtered version of the self-organizing map is implemented

to remove vehicle samples that are highly influenced by background spectra. These

samples are considered noisy and could adversely affect classification accuracy.
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1.4 Organization

This thesis consists of five chapters. Fig. 1.2 provides a reference for the first

three chapters. This first chapter presents the problem statement, the importance

and material needed to understand this research, and the scope and limitations of

this research effort. The hyperspectral-augmented target tracking system consists of

numerous functions, but this thesis only evaluates several key aspects of the system.

The research scope defines the boundaries that cover these aspects.

The second chapter provides more in-depth background information. It dis-

cusses classification and target tracking in more detail, provides the rationale behind

the choice of hyperspectral features (over panchromatic video image features), and de-

scribes several approaches for the system elements. Several literature reviews provide

insight to other relevant research in feature-aided tracking, including target tracking

applications using hyperspectral data.

The third chapter presents the methodology by following the signal flow through

the system, from sensor data formation to data association. In this presentation, the

data starts as separate entities—hyperspectral sensor data and panchromatic video

sensor data. From the information provided by both data sets, an HSI chip is formed.

The HSI chip is processed by the hyperspectral elements for pixel classification and by

the tracking elements for track initiation or track update. This chapter also describes

the procedures and algorithms performed by each system element and provides the

parameters used in the hyperspectral data analysis and target tracking functions

(Fig. 2.1, Sec. 2.2 and 2.3, respectively).

The fourth chapter describes the design of experiments and provides the quan-

titative results. The design of experiments discusses various system configurations

and ambiguous scenarios, which are used for determining the feasibility of the

hyperspectral-augmented tracker. This chapter also analyzes and compares the dif-

ferent configurations in order to identify the configuration that provides the most
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meaningful results. The analysis compares the performance of a target track before

and after an ambiguous situation is encountered.

Finally, the fifth chapter summarizes the findings, provides a final analysis of

the results, and discusses the ramifications of those results on the overall ISR need.

The analysis also addresses the shortcomings and assumptions in the methodology

and experimental design. Based on goals achieved, this chapter provides a future

perspective on this research effort and outlines recommendations for future research.
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II. Background Information

This chapter provides a comprehensive problem background, examines what oth-

ers have done to address the problem area, and presents a literature review on

related works in the areas of hyperspectral data classification, target tracking, target

tracking using self-organizing maps (SOM), and target tracking with hyperspectral

images (HSI). More importantly, this chapter discusses background information on

relevant concepts, processes, algorithms, and procedures in hyperspectral data anal-

ysis and target tracking.

2.1 Related Works in Classification and Tracking

As previously discussed in Sec. 1.1, kinematic-only target tracking is highly

susceptible to track swaps and track losses in ambiguous situations. Track swaps and

track losses cause the tracker to perform ineffectively. An alternative is feature-aided

target tracking using features derived from panchromatic video images. When going

through ambiguous situations, the feature-aided tracker disambiguates closely spaced

tracks based on their feature classification. After the tracker extracts features, it

identifies a track according to a learned feature model. One such model is a two-

dimensional histogram in which the dimensions consist of a pixel’s intensity and its

radial distance from the centroid of the track. Feature-aided tracking methods often

successfully address the deficiencies of kinematic-only tracking and can be effective

in disambiguating targets in multi-target scenarios. However, they have significant

drawbacks, as illustrated by the following works:

• In [48], the authors point out that the mean-shift algorithm, which is a gradient-

based method, is often chosen for object tracking because it is very efficient and

easy to implement and performs well in tracking objects with partial occlusions,

background clutter, and large motions. However, despite many of its good

properties, it can only find a local optimal object position instead of a global

one (a common problem exhibited by gradient-based methods). Furthermore,
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it does not perform well for scale variations and is sensitive to illumination

variations and severe partial occlusions.

• In [49], feature information comes from all moving objects within view, and

detected objects are tracked by feature. The tracking system integrates spa-

tial position, motion, shape, and color, which makes the tracker insensitive to

changes in background, interruption of motion, and object orientation. The

shape and color features, however, are potentially unreliable. An object with

complex shape is more likely to change its compactness1 than an object with a

simple shape. Furthermore, its color is likely to change with lighting conditions.

• The authors in [16] present a scheme for vehicle fingerprinting for tracking and

reacquisition in video. They claim that, for many man-made objects such as

buildings and vehicles, edges are the most dominant features. Ideally, the ge-

ometry and appearance of the vehicle can be fully described if (1) all the edges

can be detected and their 3D locations and orientations reconstructed, and (2)

the color/texture information for all the regions delineated by the edges can be

extracted. However, it is difficult to discriminate objects that have the same

geometric structure and differ only in color, and edge matches in a cluttered

background are impractical for object alignment.

These works are just a small fraction of the extensive research in classification

and tracking. From these three, however, two important conclusions can be reached.

First, when feature extraction algorithms are applied to video images, they are highly

dependent on image resolution, object orientation, intensity changes, object similarity

and segmentation, and reliable invariant feature representations [16]. Clearly, one has

to overcome these challenges to succeed in classifying and tracking targets. Instead

of using video-based features, this research proposes to identify and track targets of

interest using their unique hyperspectral signatures. Since hyperspectral data are

obtained by a separate sensor, they are not dependent on the features of the tar-

1Compactness is defined as 4π∗Area
Perimeter2 , where Perimeter is the number of boundary pixels.
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get measurements in the video images. Second, if the classification component of

the feature-aided target tracking works well in disambiguating objects, the tracker

maintains tracks of moving objects effectively. Thus, tracking performance is directly

affected by the classifier’s ability to distinguish target classes of interest.

Related works have also been published on the use of hyperspectral data, either

as a means to track targets or as an aid to existing tracking methods:

• The authors in [39] extend the histogram model used in previous presentations of

the Histogram Probabilistic Multi-Hypothesis Tracking (H-PMHT) algorithm2

to treat hyperspectral data. Hyperspectral data is interpreted as a spatial-

spectral histogram.3 The objective of the spectral H-PMHT algorithm is to

disambiguate tracks when they cross paths, where a track is defined as the

physical depression or footprint left behind by a target source on the ground.

Spectral H-PMHT assumes that the spectral characteristics of the sources are

known and available in simple nonparametric forms.

• The authors in [20] analyze the ability to associate a vehicle uniquely in one

image with the same vehicle in a subsequent image by extracting its spectral

characteristics and using the information to find its location. Image analysis is

performed by converting the hyperspectral data into surface reflectance through

an atmospheric compensation process and applying a matched filter to locate

vehicles of interest. When contextual information providing building and other

fixed object locations is used, initial results show that, for an image-derived

spectrum of a blue vehicle, the algorithm finds the same vehicle in a subsequent

image with a false alarm rate of approximately six out of 200,000 pixels. How-

ever, when the authors attempt this type of analysis for other vehicles in the

2The Histogram Probabilistic Multi-Hypothesis Tracking (H-PMHT) algorithm applies the
Expectation-Maximization (EM) method [38] to target tracking using sensor level data. It inter-
prets the received power levels in all of the sensor cells as a synthetic histogram in order to generate
point measurements. For images, power level is pixel intensity, and a cell is a pixel.

3Each hyperspectral scan line is a multidimensional array, where each spatial cell has an associated
vector of (possibly disjoint) frequency bin amplitudes. The intensity data in this array is interpreted
as a spatial-spectral histogram of a synthetic sensor process.
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scene (other blue cars, red cars, etc.), they observe false alarm rates significantly

higher. Thus, their methodology only works for limited cases.

• The work in [44] addresses the problem of tracking a moving point target in

a time sequence of hyperspectral images.4 The use of hyperspectral images

should be superior to current technologies, due to the benefit of simultaneously

exploiting two target-specific properties: the spectral target characteristics and

the time-dependent target behavior. The approach consists of two steps. The

first step transforms each of the hyperspectral images forming the sequence

into a two-dimensional image5 using a known point-target detection acquisition

algorithm. The hyperspectral image transformation uses a matched filter (MF)

detector6 based on a linear mixing model. The second step performs target

detection and tracking using time-domain processing. Time-domain processing

uses an algorithm based on temporal processing of the frame sequence using the

spatial location of the hyperspectral detection. Temporal processing exploits

the change in the IR pixel’s intensity as a moving point target traverses it. The

temporal profile of a target-affected pixel rises and falls as the target enters and

exits the pixel, while clutter-affected temporal profiles show more monotonic

changes over an equal time period. A variance-filter algorithm [37] detects the

presence of targets from the temporal profile of each pixel while suppressing

clutter-specific influences.

The approach in [44] provides an insightful way of dealing with tracking prob-

lems using hyperspectral imagery, specifically the benefit of simultaneously exploiting

the spectral target characteristics and the time-dependent target behavior. This re-

search also exploits these two target-specific properties. Hyperspectral data analysis

4Since no camera is currently capable of taking a hyperspectral movie, the authors developed
a simple algorithm that creates a hyperspectral movie based on a real-world infrared (IR) image
sequence. The algorithm also implants a synthetic moving target, which travels in backgrounds that
are influenced by both evolving clutter and noise.

5The two-dimensional image consists of the spatial dimensions of the target of interest over the
IR scene.

6MF detectors assume that the spectral characteristics of a target of interest are known. The
detectors differ in the way they model mixed pixels and spectral variability.
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Figure 2.1: The system elements of a hyperspectral-augmented target tracker are
described in two main sections: hyperspectral data analysis (Sec. 2.2) and target
tracking (Sec. 2.3). Each subsection (identified in each sub-block in the diagram)
discusses the algorithms, theories, and concepts performed by each element.

uses hyperspectral imagery to construct the feature model for various targets and

applies this feature model to classify hyperspectral pixels, and target tracking uses

panchromatic video images to generate and update existing tracks. The hyperspectral-

augmented tracker further utilizes hyperspectral line scanner dynamics to provide

kinematic updates. This chapter describes these processes in the hyperspectral data

analysis and target tracking sections.

Fig. 2.1 summarizes the organization of the next two sections. These sections de-

scribe the background concepts and definitions of various system elements and provide

a comparative study of several relevant approaches. Hyperspectral data analysis ex-

pands on the hyperspectral pixel classification briefly described in Sec. 1.2.2, whereas

target tracking expands on the multiple target tracking (MTT) system discussed in

Sec. 1.2.3.
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Figure 2.2: The electromagnetic energy that a sensor receives is not purely charac-
teristic of the reflectance of the material. The received signal is corrupted by sensor
noise, viewing and illumination geometry, atmospheric scattering, reflected light from
adjacent objects, absorption of electromagnetic energy by the earth’s atmosphere, and
sensor abberations.

2.2 Hyperspectral Data Analysis

Hyperspectral data analysis begins with acquisition and preprocessing to re-

move known system errors, assure accurate calibration, and correct for atmospheric

effects [10] (Sec. 2.2.1). Spectral feature extraction determines the relevant dimensions

of the data and extracts them for analysis7 (Sec. 2.2.2). Spectral matching and iden-

tification (ID) (Sec. 2.2.3) classifies each pixel of a hyperspectral image (HSI) chip

as one of the classes stored in the spectral library (Sec. 2.2.4). The tracker uses the

hyperspectral observations formed from the chip (if any) to initiate or update existing

target tracks.8

2.2.1 Hyperspectral Sensor Data Calibration and Atmospheric Correction.

As shown in Fig. 2.2, the measurements of interest are not the electromagnetic energy

received by the sensor, but the output of complex radiometric preprocessing and sensor

noise. Radiometric preprocessing influences the brightness values of an image to

correct for sensor malfunctions and inconsistencies or to compensate for atmospheric

degradation. Many important additional effects exist for which the system may need

to account. As illustrated in Fig. 2.3, these effects include [36]:

• the angle of the sun,

7As previously discussed, this research does not perform spectral feature extraction. This system
element is a placeholder for relevant future work.

8Formation of hyperspectral observations is discussed in Sec. 3.4
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Figure 2.3: Solar illumination and atmospheric path absorption and scattering
modulate the direct path radiance signal observed at the sensor.

• the viewing angle of the sensor,

• the upwelling solar radiance from atmospheric scattering,

• the secondary illumination of the material by light reflected from adjacent ob-

jects in the scene,

• shadowing,

• the scattering and absorption of the reflected radiance by the atmosphere, and

• spatial and spectral aberrations in the sensor.

Radiant flux or radiance is recorded by sensors that observe the earth’s surface

using visible or near-visible radiation. For a given ground pixel, the radiance that a

sensor observes at any particular wavelength is determined (to first order) by the solar

illumination and the reflectivity (reflectance) of the material at that wavelength [10].

Reflectance is the brightness that is of interest for remote sensing. When measure-
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ments are based solely on the reflectance property of the material, it is feasible to

compare measurements made by different sensors over different locations at differ-

ent times. Therefore, a key preprocessing step in the exploitation of hyperspectral

data characterizes and compensates for the environmental and atmospheric effects.

Sophisticated methods have been developed for atmospheric correction and sensor

calibration. However, to maintain the focus of this research, this thesis considers

these methods a preprocessing step with no further elaboration.

2.2.2 Spectral Feature Extraction. “Features” are not geographical fea-

tures visible in an image, but are rather “statistical” characteristics of image data—

individual bands or combinations of band values that carry information concerning

systematic variation within the scene. Thus, spectral feature extraction isolates com-

ponents (or dimensions) within the hyperspectral data that are most useful in portray-

ing essential elements of an image9 [10]. High-dimensional spaces are mostly empty;

therefore, it is invaluable to find the most appropriate subspace that contains the sig-

nificant structure for a given classification problem. This is accomplished by feature

extraction algorithms. Examples are principal component analysis [10], discriminate

analysis [13], decision boundary feature extraction [23], and joint classification and

feature extraction methods [17,28,33].

2.2.3 Spectral Matching and Spectral Identification (ID). The spectral

matching and identification (ID) functions serve as the crux of the supervised classi-

fication process. In supervised classification, there exists a feature model or idealized

feature representation for different classes. This research uses the knowledge of the

hyperspectral signatures of multiple vehicles to classify a vehicle observed in an urban

scene. In the classification literature [43], this approach is called “supervised learn-

ing,” which means that the phenomena of interest has been divided into a number

of a priori groups, from each of which a number of samples have been observed and

9In the literature, this is also referred to as dimensionality reduction.
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have been characterized in terms of a number of discriminating features. The sample

set is called training data and stored in a spectral library. Each sample in the spectral

library consists of a multidimensional pattern vector. Given each spectral band is

represented by one axis of a multidimensional space (the feature space), a sample is a

point in that space. If all the samples in the library are well-defined, they should fall

into clearly defined groups. Hyperplanes and hypersurfaces, which represent decision

boundaries, can be used to separate the distinct classes in the multidimensional fea-

ture space. A typical remote sensing application employs an algorithm that classifies

or labels the individual pixels forming the hyperpectral cube (see Fig. 1.1), in which

each pixel consists of a multidimensional vector. The algorithm is called a decision

rule or a classifier, and it determines the position of the pixel’s spectral response with

respect to the decision boundaries, and thus allocates a specific label to that pixel [43].

Classifiers can be developed using parametric or nonparametric approaches.

As any pattern recognition book [13,43,45] will show, there are many algorithms

from which to choose. When faced with such a range of algorithms, how does one

know which algorithm is “best?” According to the No Free Lunch Theorem [13],

there is no such thing as an overall superior classifier. If one algorithm seems to

outperform another in a particular situation, it is a consequence of its fit to the

particular pattern recognition problem, not the general superiority of the algorithm.

The decision should be based on the aspects that matter most—prior information,

data distribution, amount of training data, and cost or reward functions [13].

A number of algorithms that have been developed is grounded to a significant

degree in statistical decision theory and regarded as parametric classifiers (e.g., max-

imum likelihood or minimum distance procedures) [45]. With this type of classifier,

serious problems arise when the number of available samples tend to be small and the

dimensionality of the feature vector is large [13]. To represent the class distribution

accurately, a rule of thumb is that the number of training data samples per class

should be at least thirty times the number of features [43]. Hyperspectral data often

have more than 200 dimensions, thus requiring approximately 6,000 training samples
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Figure 2.4: This plot shows the 150 spectral responses for vehicle class 8. The
variation is due to the different mixtures of class 8 spectrum with background spectra.
In some samples, the class 8 spectrum is highly influenced by the effect of one or more
background classes, specifically vegetation spectra.

for each class. This requirement is almost never met since many objects of interest

only occupy on the order of a 100 pixels. Furthermore, the computational complexity

required to develop the classifier does not allow for real-time processing. Therefore,

nonparametric algorithms are evaluated in this work. They do not make assumptions

about the statistical distribution of the data and permit real-time processing of very

large data sets [43].

Because of the spatial resolution of remote sensors, mixed pixels frequently

contaminate the hyperspectral data obtained from urban environments. These are

the pixels that do not represent a single homogeneous class; instead, two or more

classes are present in a single pixel area [45]. In fact, the spectral library is made up

of such pixels. An example is shown in Fig. 2.4. Traditional classification methods do

not provide a good mechanism for coping with such uncertainty and imprecision. This

research initially evaluated two traditional classifiers, namely, the minimum Euclidean

distance (MED) [13] and k-means classifiers [13]. The problem with these classifiers
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is that, once a pixel has been assigned to one class, its effect on other classes is

negligible. The hard classification assignment forces the mixed pixels to be allocated

to one and only one class, thereby resulting in erroneous classifications [45]. Since this

research deals with complex mixtures, it is a a major consideration in the choice of

nonparametric algorithms. Two such algorithms that perform well with mixed pixels

are evaluated in this research—fuzzy c-means [13] and self-organizing map [22]. Both

cluster or partition data into subsets, so that the data in each subset share some

common trait, which is often proximity based on a defined distance measure. Since

these are clustering algorithms, a classification method will have to be implemented

after clustering is performed.

2.2.3.1 Fuzzy C-Means (FCM) Clustering. Fuzzy set theory was mo-

tivated by considerations discussed previously and provides a conceptual framework

for solving knowledge representation and classification problems in an ambiguous en-

vironment [43]. The authors in [31] use a priori knowledge of spectral information

for certain land cover classes in order to classify SPOT10 images using fuzzy logic.

Hence, it is possible to classify the remotely sensed image (as well as any other digital

imagery) in such a way that certain land cover classes are clearly represented in the

resulting classified image. Based on the results, fuzzy logic can be satisfactorily used

for hyperspectral data classification.

A fuzzy-based classifier assigns class membership to pixels based on a mem-

bership function [43]. The membership function characterizes the difference between

crisp (or hard) and fuzzy sets. In a crisp set, the membership function can only out-

put two choices: 0 for non-membership and 1 for full membership. Fig. 2.5(a) is the

traditional crisp set concept. The membership grade of cluster c1 or c2 is either 0 or 1.

The concept of a fuzzy set softens this constraint and allows for partial membership.

Aside from 0 and 1, each sample can hold intermediate membership grades, signifying

partial membership in two or more classes. Fig. 2.5(b) shows overlap between the two

10SPOT is a high-resolution, optical imaging earth observation satellite system.
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Figure 2.5: (a) In the traditional crips set concept, the membership grade of cluster
c1 or c2 is either 0 or 1. (b) In fuzzy set theory, overlap between the two clusters is
allowed [43].

clusters. Cluster c1 and c2 may share samples, and the membership grade of a sample

will generally decrease as the distance between the sample and a given cluster center

increases.

This research implements the fuzzy c-means clustering algorithm. It is an iter-

ative algorithm that separates data clusters with fuzzy means and fuzzy boundaries

and is less dependent on the initial state of the cluster centers than the traditional

k-means. Fig. 2.6 illustrates the FCM clustering algorithm. At each iteration, FCM

adjusts the probability of cluster memberships for each point. For illustration pur-

pose, the cluster centers are not randomly initialized, but are located approximately

in the center of the data set. Starting from the green cluster centers, the algorithm

converges to the blue cluster centers after seven iterations. In general, the perfor-

mance of fuzzy clustering methods is superior to that of corresponding hard versions

(e.g., k-means clustering), and they are less likely to get stuck in a local minima [43].

The FCM algorithm is described as follows [43].

Let S = s1, s2, . . . , sM be a finite subset of RN , the N -dimensional real number

vector space. Let integer K, M ≥ K > 2, denote the number of fuzzy subsets. Thus,

a fuzzy K partition of S can be represented by a K ×M matrix U in which each

entry of U, denoted by ukm, satisfies the following constraints:
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x2

x1

Figure 2.6: At each iteration of the fuzzy c-means clustering algorithm, the prob-
ability of cluster membership for each prototype vector is adjusted according to
Eqs. (2.3) and (2.4) (here b = 2). After seven iterations, the algorithm has converged
to the blue cluster centers.

ukm ∈ [0, 1] and
K
∑

k=1

ukm = 1,∀m. (2.1)

In the case of image classification, M is the number of pixels, and K is the number of

classes. The membership values of one pixel must sum to 1, as specified in Eq. (2.1).

The FCM algorithm uses a clustering criterion based on minimizing the gener-

alized within-groups sum of square error function Jb(·):

Jb(U,M) =
M
∑

m=1

K
∑

k=1

(ukm) · ‖sm − µk‖2. (2.2)

M = (µ1,µ2, . . . ,µK) is the vector of cluster centers (i.e., the means of the clusters),

with µk ∈ RN , and b is the membership weighting exponent, 1 ≤ b < ∞. For b > 1

and sm 6= µk, a local minimum of Jb is achieved if:
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ukm =
1

K
∑

j=1

(

‖sm − µk‖
∥

∥sm − µj

∥

∥

)2/(b−1)
∀m, (2.3)

and the kth cluster’s mean is calculated as:

µk =

∑

m

(ukm)b · sm

∑

m

(ukm)b
∀k. (2.4)

The FCM clustering is performed by iteratively applying Eqs. (2.3) and (2.4). As

b→ 1, a pixel’s membership grades become closer to 1 or 0. The greater the value of

b (e.g., 2 or more), the membership grades move from the crisp ‘0’ or ‘1’ membership

assignment to a fuzzy assignment, which allows each of theM -items to belong partially

to each of the K clusters.

2.2.3.2 Self-Organizing Map (SOM) Clustering. Because of the effi-

ciency of the human eye and brain combination in solving pattern recognition prob-

lems, researchers in this field considered whether computer systems based on a sim-

plified model of the brain can be more effective than standard statistical classification

methods [43]. Such research led to the adoption of artificial neural networks (ANN).

ANNs are information-processing devices based on heuristically conceived and bio-

logically inspired simple components. Neural-network computing methods are highly

effective and economical when [22]:

• Data are not always describable by low-order (first and second order) statistical

parameters.

• Their distributions are non-Gaussian.

• Their statistics are nonstationary.

• The functional relations between data elements are nonlinear.
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An advantage of neural networks lies in the high computation rate achieved

by their massive parallelism, resulting from a dense arrangement of interconnections

(weights) and simple processors (neurons) [43]. The high computation rate allows for

real-time processing of very large data sets. The performance of a neural network de-

pends to a significant extent on how well it has been trained, and not on the adequacy

of assumptions concerning the statistical distribution of the data, as is the case with

the maximum likelihood classifier, the minimum classification error classifier (i.e.,

minimum risk), Linear Discriminant Function (LDF)/Quadratic Discriminant Func-

tion (QDF), and others. During the training phase, the neural network “learns” about

regularities present in the training data, and based on these regularities, constructs

the rules that can be extended to the unknown data.

One kind of fundamental neural network architecture is Kohonen’s self-

organizing (feature) map [22]. The SOM, regarded as a simple competitive-learning

network, learns to recognize groups of similar input vectors in such a way that neurons

physically near each other in the output layer respond to similar input vectors [12]. In

the pure form, the SOM defines an “elastic net” of points that are fitted to the input

signal space to approximate its density function in an ordered fashion. It converts

the nonlinear statistical relationships between high-dimensional data in the input

data space RN into simple geometric relationships of their image points on a low-

dimensional display, usually a regular two-dimensional grid of nodes or neurons [22].

Fig. 2.7 is an example of the topology of a SOM. It consists of three layers [43]:

the input layer (sensory cortex) with two neurons, the linking weights (topological

feature space), and the output layer (mapping cortex) made up of a grid of 5 × 5

neurons equally spaced on the grid. The number of input neurons is equal to the

number of features or dimensions. As for the output neurons, there are no clear

rules about their number. Generally, the output layer of a SOM is a two-dimensional

layer made up of m × n (n,m > 1) neurons, spaced apart at a Euclidean distance

of unity (rectangular lattice), with each neuron relating to a fixed position in the

two-dimensional output space. Synaptic weights link the neurons in the input layer
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Figure 2.7: The SOM topology consists of the input layer, linking weights, and
output layer. The number of neurons in the input layer is equal to the number
of features or dimensions. The output layer is generally a two-dimensional n × m
(n,m > 1) neurons. Weight vectors link the neurons in the input layer and output
layer.

and the output layer. They are initialized randomly and are then continually updated

during training in order to organize the relationships among the input patterns. Once

the training is complete, the final weights that are close together will have similar

magnitude.

The SOM algorithm defines a special recursive regression process, in which only

a subset of models is processed at every step [22]. It associates a parametric model vec-

tor, also called a weight, reference, or prototypical vector mℓ = [ζℓ
1, ζ

ℓ
2, . . . , ζ

ℓ
N ]T ∈ RN ,

with every neuron ℓ. Before recursive processing, the algorithm randomly initializes

each weight vector mℓ. In the long run, the mℓ will attain two-dimensionally ordered

values. This is the basic effect of self-organization.

The lattice type of the array can be defined to be rectangular, hexagonal, or

even irregular. An input vector s = [ξ1, ξ2, . . . , ξN ]T ∈ RN is connected to all neurons

in parallel via variable scalar weights ζℓ
j , which are in general different for different

neurons. In an abstract scheme, it may be imagined that the input s, by means of

some parallel computing mechanisms, is compared with all the mℓ, and the location
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of best match in some metric is defined as the location of the “response.” The exact

magnitude of the response need not be determined: the input is simply mapped onto

this location. In many practical applications, the smallest of the Euclidean distances
∥

∥s − mℓ
∥

∥ can be made to define the best-matching neuron, denoted by w:

w = arg min
ℓ





√

√

√

√

N
∑

n=1

(sn − mℓ
n)2



 , (2.5)

where ℓ is the index of the SOM lattice neurons. Each dimension can have an as-

sociated weighting factor, where the weights of all dimensions are real-valued on the

interval [0, 1]. This weighting is often used as a binary mask for excluding certain

spectral dimensions from the best-matching neuron-finding process (1 for include, 0

for exclude). The distance metric becomes:

w = arg min
ℓ





√

√

√

√

N
∑

n=1

βn(sn − mℓ
n)2



 , (2.6)

where βn is the mask value of dimension n. This research does not perform spec-

tral extraction or dimensionality reduction, and all dimensions are assumed equally

important; therefore, β = 1 for all N dimensions.

During learning, the weight vectors that are topographically close in the array

up to a certain geometric distance will activate each other to learn something from the

same input s (Figure 2.8). This adaptation procedure will result in a local relaxation

or smoothing effect on the weight vectors of neurons in this neighborhood, which in

continued learning leads to global ordering.

The SOM update rule for the weight vector of neuron ℓ is:

mℓ(t+ 1) = mℓ(t) + hwℓ(t)[s(t) − mℓ(t)], (2.7)
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BMN

S

Figure 2.8: The black dots represent the weights of the output neurons. The best
matching neuron (BMN) and some of the surrounding weights of the input vector s
are updated according to Eq. (2.7). In the figure, the BMN corresponds to the nearest
prototype vector mℓ to the input vector s. The input vector s is physically located
at ‘s.’ The solid and dashed lines correspond to the weight vectors before and after
updating, respectively.

where t = 0, 1, 2, . . . is an integer, discrete-time coordinate. The input vector s(t) is

taken in the order in which it appears in the data set at time t. In the relaxation

process, the function hwℓ(t) has a very central role: it serves as the neighborhood

function, a smoothing kernel defined over the lattice points. For convergence, it is

necessary that hwℓ(t) → 0 when t→ ∞. Usually

hwℓ(t) = h(
∥

∥ηw − ηℓ
∥

∥ , t), (2.8)

where ηw ∈ R2 and ηℓ ∈ R2 are the location vectors of neurons w and ℓ, respectively,

in the array. With increasing
∥

∥ηw − ηℓ
∥

∥, hwℓ → 0. The average width and form of

hwℓ define the “stiffness” of the “elastic surface” to be fitted to the data points.

In the literature, a widely applied neighborhood kernel can be written in terms

of the Gaussian function,

hwℓ(t) = α(t) · exp

(

−
∥

∥ηw − ηℓ
∥

∥

2

2σ2(t)

)

, (2.9)
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Figure 2.9: In this example, the blue ‘•’ on the m-n plane are the neurons of the
two-dimensional 5 × 5 self-organizing map. The surface is the Gaussian function
where α = 0.9, σ = 1, and winning neuron w is located at [2,2]. The multiplier hwl in
Eq. (2.7) is the intersection (represented by the black ‘•’) between the vertical dashed
line and the surface of the Gaussian function for each neuron ℓ.

where α(t) is a scalar-valued learning-rate factor, and the parameter σ(t) defines the

width of the kernel. The latter corresponds to the radius of of the neighborhood array

points around node w. A reasonable choice for the learning-rate is given in Eq. (2.10),

α(t) = α0(1 − t

T
), (2.10)

where T is the training length and α0 is the initial learning rate. Both α(t) and

σ(t) are monotonically decreasing functions of time. Fig. 2.9 shows an example of

a Gaussian neighborhood function.11 The Gaussian function hwℓ is at its maximum

when w = ℓ and decreases radially as one gets farther away from the winning neuron

w on the grid.

11Note that since α is large (α = 0.9), σ would also have to be large, at least half the diameter
(σ ≈ 3). This would cause the “bell” shape to be almost flat. To emphasize the shape of the bell
curve in the figure, σ is small (σ = 1).
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The self-organization process consists of two phases. The first phase, also called

the ordering phase, uses relatively large initial learning rate α0 and neighborhood

radius σ0 (at least half the diameter of the network) for fast initial convergence.

Throughout this phase, the learning rate and neighborhood radius decrease to the

values defined in the second phase. The neurons order themselves in the input space

with the same topology in which they are ordered physically [12]. The second phase,

also called the tuning phase, lasts for the rest of training or adaptation. Throughout

this phase, the neighborhood radius stays at the tuning neighborhood radius, which

should include only close neighbors. The learning rate continues to decrease from

the tuning phase learning rate, but very slowly. The small neighborhood and slowly

decreasing learning rate fine-tunes the map, while keeping the ordering learned in the

previous phase stable. The number of training steps for tuning should be much larger

than the number of training steps in the ordering phase as the tuning phase takes

much longer [46].

Fig. 2.10 is an example of the SOM’s weight distribution output. It consists of

1,000 uniformly distributed samples (denoted by a ‘+’ symbol) on a two-dimensional

space within the range [0,1] on each coordinate axis. The SOM algorithm constructs

the map by using two neurons in the input layer (x and y dimensions) and 5×5 output

layer. The red ‘•’ symbol indicates the location of the output neurons in terms of

the associated weights in the topological feature space. The red lines show the links

between spatially adjacent neurons. The algorithm initializes the weights randomly

before training begins (Fig. 2.10(a)) and continually adjusts them during training.

After 200 iterations, the weights start to order themselves (Fig. 2.10(b)). After 600

iterations, the weights start to expand (Fig. 2.10(c)). After 1,000 iterations, the

weights are approximately uniformly distributed (Fig. 2.10(d)). The iterative process

organizes the relationships among the input patterns. This is the nature of self-

organization. Eventually, the neurons that are close to each other will have a similar

weight magnitude.
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Figure 2.10: (a) Random initial weight vectors. (b) Weight vectors after 200 itera-
tions. (c) Weights after 600 iterations. (d) Weights after 1,000 iterations.

Several works in target tracking have used the SOM, particularly for its self-

organizing characteristic. In [5], the authors present a vehicle tracking algorithm based

on the Karhunen-Loeve Transform (KLT) feature tracker [40],12 which exploits a SOM

to drastically reduce tracking errors arising from occlusions. Each occluded object uses

a 3-neuron SOM to cluster features by speed. Tracked features are correctly separated

from those undergoing a tracking error by using the SOM’s ability to match input

topology. In [35], the authors explore novel automatic target recognition (ATR)

techniques to preprocess, track, and classify objects in sequences of IR images. Using

a SOM-based classifier, objects are classified using different types of features, such as

statistical (based on intensity) and shape (based on edge information) of the object.

The tracking results have proven to be better than many proposed methods for IR

data [35].

Since the SOM compresses information while preserving the most important

topological and/or metric relationships of the primary data elements on the map

12The Karhunen-Loeve Transform, also known as principal component analysis, is a representation
of a stochastic process as an infinite linear combination of orthogonal functions [19].
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(this may be thought to produce some kind of abstractions) [22], it works well for

clustering and organizing hyperspectral data obtained from pixels with complex and

noisy spectral mixtures. The physical relationships among different material types

and their distributions are visualized in a two-dimensional map. The measure of

dissimilarity between material types can be expressed not only by the difference be-

tween their corresponding weight vectors, but also by the difference between their

corresponding lattice locations.

2.2.4 Spectral Library. When creating the spectral library, several aspects

of the data should be considered:

• The problem of optimally training a classifier comes down to how completely

and precisely the data set is modeled. The rule for establishing the list of classes

is that the classes must be [23]:

– Of informational value. The list must contain all of the classes of interest

to the information consumer.

– Exhaustive. In addition to those desired by the user, it must contain

enough additional classes so that there is a logical class to which to assign

each pixel in the data set.

– Separable. The classes must be separable in terms of available spectral

features. When classes are separable, one is able to discriminate among

them. A typical way of determining separability between two classes of

materials is through a distance measure.

• It is well established that the geometry of a vector space changes continually as

the dimensionality of the space increases. For example, a line in one-dimension

turns to a square in two-dimensions to a box in three-dimensions, and so on.

Furthermore, it usually requires a dimensionality of the order of 30 or more to

accomplish many practical classification tasks satisfactorily.
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• The detailed spectral data can be acquired in the laboratory or in the field. In

the laboratory, hyperspectral data are typically measured using a spectrometer,

an optical instrument used to measure properties of light over a specific portion

of the electromagnetic spectrum. In the field, measurements can be obtained

using either a spectrometer or a hyperspectral remote sensor.

2.3 Target Tracking

The target tracker collects sensor data from a field of view (FOV) containing

one or more potential targets of interest and partitions the sensor data into sets of

observations, or tracks, that are produced by the same sources [8]. Image-based target

tracking systems process digital imagery and deal with imagery in units of frames,

expressed as two-dimensional matrices of image pixels collected by the sensor at ap-

proximately the same time. Once the tracker forms and confirms a track, the number

of targets can be estimated and quantities, such as target velocity, future predicted

position, and target classification characteristics, can be computed for each track.

The elements of the tracking system are sensor data processing and measurement for-

mation (Sec. 2.3.1), observation-to-track association (Sec. 2.3.2), track maintenance

(Sec. 2.3.3), filtering and prediction (Sec. 2.3.4), and gating computations (Sec. 2.3.5).

The interaction between these system elements is shown in Fig. 2.1.

2.3.1 Panchromatic Video Sensor Data Processing and Measurement Forma-

tion. Similar to the hyperspectral input data, the measurements of interest are

not the electromagnetic energy received by the panchromatic video camera. The re-

ceived signal is preprocessed to remove unwanted effects due to sensor noise, thermal

energy from equipment, sensor quantization, and airborne motion (jitter) (Fig. 2.11).

Furthermore, an important sensor design consideration is the decision rule on the re-

ceived signal intensity, so as to discriminate between returns from targets of interest

and returns from extraneous sources. Two probabilities that are important param-

eters for the choice of decision rule are probability of false alarm and probability of
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Figure 2.11: The measurements of interest are not raw data points but usually the
outputs of complex signal processing and detection subsystems.

detection. The probability of false alarm is the percentage of detections that does not

match the true target. Conversely, the probability of detection is the percentage of

detections that match the true target. The simplest approach to the decision process

is to compare the incoming signal power or intensity to a set threshold so that the

probability of false alarm (PFA) remains constant (called a constant false alarm rate

detector). For a given threshold setting, the probability of detection (PD) will gener-

ally be a complicated function of the sensor capabilities, the target size and distance

from the sensor, and the environment (atmospheric attenuation, and so forth). There

are two commonly used target measurement algorithms:

1. Centroid and edge tracking determine a point on the target by segregating target

pixels from background pixels via a segmentation or gradient process [8].

• If the size of the target image obtained from the imaging sensor appears

as a “blob” (about 2-10 video pixels), centroid type trackers use the mea-

sured pixel intensities to calculate the centroid of the target. The tracker

processes this information further to estimate the target motion (e.g, pixel

intensity frame differencing). If the size is around 100 pixels, it is too small

for feature extraction, but too large for the pixel intensities to be mean-

ingful for centroid calculation. Feature extraction techniques require the

pixel region to have enough resolved internal details, which usually occur

in higher resolution imagery. Furthermore, it is too large for the pixel in-

tensities to be meaningful for centroid calculation since the pixel intensities

vary as image size becomes larger. Instead, the centroid tracker performs
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image segmentation by applying a threshold to segment the scene into tar-

get and background regions [3, 8], calculates the centroid of the target in

the segmented image, and uses the centroid as a point measurement [3].

• Edge tracking is similar to centroid tracking. Instead of using the centroid

of the target image, it detects the leading edge (or other edges of interest).

Changes in the position of the edge are input to the tracking filter.

2. Larger targets often begin to develop internal details and are more suitably

tracked using correlation methods [8]. Correlation trackers encompass a large

collection of tracking algorithms. These are either matched filters or an ap-

proximation of a matched filter. Once a target has been acquired, the tracker

creates a target reference, or template window, from the target area of interest.

At each tracking cycle, the tracker matches the reference template to the target

in the incoming video image. In some cases, the reference template is updated

to allow for variations in the imagery (e.g., lighting variations).

2.3.2 Observation-to-Track Association. The association function takes

observation-to-track pairings that satisfy gating constraints and determines the

observation-to-track assignments. Gating determines which possible observation-to-

track pairings are “reasonable,” and the tracker uses an association algorithm to

determine final pairings. If more than one observation exists in the gate, as shown in

Fig. 2.12, this leads to association uncertainty [3]. The simplest association approach,

denoted global nearest neighbor (GNN), determines a unique assignment so that at

most one observation can be used to update a given track, and an observation can

be used to update at most a single track. This assignment is typically made such

that some cost is minimized (e.g., total summed distance) or the likelihood is maxi-

mized [7]. Another simple assignment approach is the “greedy” method [8], whereby

the assignments are ranked and the best available assignments are made sequentially.

The greedy assignment approach removes observations and tracks as they are assigned

and thus does not allow an observation to be used more than once nor a track to be
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Figure 2.12: This data association example consists of two closely spaced targets
(P1 and P2) and four observations (O1. . .O4). The potential pairings are P1-O1,
P2-O1, P2-O2, and P2-O3. Since O1 is the only observation within the gate of track
P1, it will likely be associated with P1, whereas P2 will be associated with either O2
or O3, which depends on the results of the association algorithm.

assigned more than one observation. The greedy approach is easy to implement;

however, it can lead to a poor overall assignment solution [8].

One solution to the assignment problem originally dealt with problems in eco-

nomic theory such as assigning personnel to jobs and delivery trucks to locations [4].

The objective in these problems is to minimize cost (or maximize profit) using avail-

able resources. One of the faster methods is the Bertsekas’ auction algorithm [4].

Based on the efficiency in the time required to understand and program the algorithm

and the solution time, the auction algorithm is the most efficient assignment algorithm

currently available [8]. The Bertsekas’ auction algorithm operates like an auction

whereby observations bid simultaneously for tracks, thereby raising their “prices.”

Once all bids are in, the algorithm awards tracks to the highest bidder. Because of its

computational efficiency, the one-sided Bertsekas auction algorithm is the association

algorithm implemented in this research. The rest of this section describes the auction

algorithm.
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Consider Bo observations and Bt tracks. The objective of the assignment process

is to divide among the Bo observations the Bt tracks by means of an auction. For

each observation i, there is a nonempty subset ∆(i) of tracks that can be assigned

to i. An assignment E is a (possibly empty) set of observation-track pairs (i, j) such

that j ∈ ∆(i) for all (i, j) ∈ E. For each observation i there is at most one pair

(i, j) ∈ E, and for each track j there is at most one pair (i, j) ∈ E. In the context

of a given assignment E, observation i is assigned if there exists a track j such that

(i, j) ∈ E; otherwise i is unassigned. Similar terminology is used for tracks. The

algorithm provides a complete assignment when every observation is assigned to a

distinct track. There is a given integer value δij that an observation i associates with

a track j ∈ ∆(i). The goal is to find a complete assignment that maximizes

∑

(i,j)∈E

δij (2.11)

over all complete assignments E. This is called the primal assignment problem [4].

For each track j, the “price” of j is denoted pj. The vector with coordinates pj,

j = 1, . . . , Bt is called a price vector. For a given price vector p, the profit margin of

observation i corresponding to p is

πi = max
j∈∆(i)

{δij − pj} , (2.12)

It is helpful to think of pj as the cost an observation incurs when assigned to track j.

Therefore, for a given price vector p, δij − pj may be thought of as the benefit that

observation i associates with being assigned to track j.

A dual problem to the assignment problem is minimizing

N
∑

i=1

πi +
N
∑

j=1

pj (2.13)
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subject to πi + pj ≥ δij, ∀i, and j ∈ ∆(i). For a given price vector p, the cost of this

problem is minimized when πi satisfies Eq. (2.12). The Bertsekas’ algorithm allows

for observations to be assigned to tracks that come within ǫ of attaining the maximum

in Eq. (2.12), given

πi − ǫ ≤ δij − pj ≤ πi, for each (i, j) ∈ E, (2.14)

where πi is given by Eq. (2.12), and ǫ is a nonnegative constant.

The algorithm begins with ǫ > 0 and fixed, some assignment E (possibly empty),

and price vector p satisfying Eq. (2.14). It proceeds iteratively and terminates when

a complete assignment is obtained. At the end of the iteration, E and p are updated

while maintaining Eq. (2.14). Each iteration consists of a bidding and assignment

phase:

Bidding phase. For each unassigned observation i in the assignment E:

1. Compute the “current value” of each track j ∈ ∆(i) given by13

vij = δij − pj. (2.15)

2. Find a “best” track j∗ having maximum value

vij∗ = max
j∈∆(i)

vij, (2.16)

and find the best value offered by tracks other than j∗.

wij∗ = max
j∈∆(i),j 6=j∗

δij − pj. (2.17)

3. Compute the “bid” of observation i for track j∗ given by

13The “current value” vij is the value that comes within ǫ of the profit margin πi.
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bij∗ = pj∗ + vij∗ − wij∗ + ǫ = δij∗ − wij∗ + ǫ. (2.18)

Assignment phase. For each track j, let P(j) be the set of observations from which

j received a bid in the bidding phase of the iteration. If P(j) is nonempty,

increase pj to the highest bid by the following:

pj = max
i∈P(j)

bij. (2.19)

Any pair (i, j) (if one exists) is removed from the assignment E, and the pair

(i∗, j) is added to E where i∗ is some observation in P(j) attaining the maximum

in Eq. (2.19).

2.3.3 Track Maintenance. Track maintenance deals with track initiation,

confirmation, and deletion. A simple approach to track initiation is to start a new

track, also known as a tentative track, for every unassociated observation.14 A more

preferred method, used with multiple hypothesis tracking (MHT), will start tentative

tracks on all observations and use subsequent data to determine which of these newly

initiated tracks are valid [8]. In Fig. 2.12, O4 will not be associated with any track;

therefore, it is a candidate for a new track.

Once a tentative track is formed, confirmation logic is usually required because

the probability of a single observation being from an extraneous source is too high

for immediate confirmation [8]. A typical simple rule for track confirmation is that

B correlating observations should be received within K frames. However, a much

better approach is to define a track score function and compare this score with an

appropriately chosen track confirmation threshold.

Similarly, deletion logic provides a means to delete a false target track, which is

a track that is not updated within some reasonable interval [8]. If a sufficiently long

14At system initialization, each observation initiates a track.
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time elapses without detection, the target will likely no longer be within the frame.

A typical simple rule is to delete a track after KD consecutive frames have produced

no updating observations. Again, however, the use of a track score function is more

general, and the track score reflects the quality of the update so that updates that

barely satisfy the gate may actually decrease the score.

The typical track score function used in modern MTT systems is a log likelihood

ratio for use in evaluation the hypothesis H1, and H0 defined as [7]:

H1: the observations contained in the track were produced by a single (target) source

H0: the observations contained in the track were produced by random false alarms

(noise or clutter)

Because the track score is a log likelihood ratio, determining track confirmation (ac-

cept H1) versus track deletion (accept H0) is an application of the classical sequential

probability ratio test (SPRT) [47]. Thus, track confirmation and deletion thresholds

and system performance predictions follow directly from SPRT theory.

2.3.4 Filtering and Prediction. The filtering step incorporates the assigned

observations into the updated track parameter estimates. For those tracks that are

not assigned an observation, the previous predicted estimates become the filtered es-

timates. Predictions are then made to the time when the next data frame is expected.

Hence, prediction quantities are of great importance because they define the center

of the gated region. The size of the gate is also directly affected by the prediction

uncertainty, which can be determined by the Kalman filter [8].

A Kalman filter is an optimal recursive estimator. It processes all available mea-

surements, regardless of their precision, to estimate the current value of the states.15

To do this, it uses [27]:

• Knowledge of the system and measurement device dynamics.

15States are variables of interest, and in tracking, usually position and velocity.
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• The statistical description of the system noises, measurement errors, and uncer-

tainty in the dynamics models.

• Any available information about initial conditions of the states.

Furthermore, the filter only needs the estimated states from the previous time step

and the current measurement to compute the estimate for the current states. No

observation history is needed. Kalman filtering is most applicable if the underlying

target dynamics and the measurement processes can be assumed to be linear and

jointly Gaussian. In this case, estimation of the mean target state and the associated

covariance matrix is all that is required to define the probability density function

(PDF) associated with the target position in state space. The Kalman filter has a

number of advantages when applied to the MTT problem [8]:

• The Kalman filter provides a general solution to the recursive minimized mean

square estimation problem within the class of linear estimators.

• The gain sequence is chosen automatically, based on the assumed target ma-

neuver and measurement noise models. The same filter can be used for varying

target and measurement environments by changing a few key parameters.

• The Kalman gain sequence automatically adapts to changing detection histories,

including varying sampling interval as well as missed detections.

• The Kalman filter provides a convenient measure of the estimation accuracy

through the state covariance matrix. Having a measure of the expected predic-

tion error variance is useful for maneuver detections, in which the Kalman filter

model provides a convenient way to adjust for varying target dynamics.

• Through use of the Kalman filter, it is possible at least partially to compensate

for effects of misassociation in a dense MTT environment.

The track dynamics process can be modeled in the discrete-time Markov

form [8]:
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x(t+ 1) = Φx(t) + q(t) + f(t+ 1|t), (2.20)

where x is the n-dimensional track state vector that includes the quantities to be esti-

mated, Φ is the known state transition matrix, q(t) is the zero-mean, white Gaussian

process noise with known covariance Q, and f(t+1|t) is the known deterministic input.

The discrete-time Markov process can be defined as a process in which the statistical

representation of the process in the future (time t + 1) is completely determined by

the present state (time t).

Measurements are in the form of linear combinations of the system states, cor-

rupted by uncorrelated noise. Thus, the N -dimensional measurement vector, z, is

modeled as [8]

z(t) = Hx(t) + v(t), (2.21)

where H is the N × n measurement matrix, and v(t) is zero-mean, white Gaussian

measurement noise with covariance R.16

Given the the target model dynamics and measurement models from Eq. (2.20)

and Eq. (2.21), the Kalman filter equations become [8]:

x̂(t+ 1|t) = Φx̂(t|t− 1) + f(t+ 1|t) + Kp(t)r(t),

Kp(t) = ΦP(t|t− 1)HTS−1, (2.22)

P(t+ 1|t) = [Φ − Kp(t)H]P(t|t− 1)ΦT + Q,

where Kp(t) is the predicted Kalman gain. The vector difference between measured

and predicted quantities

16Note that in general Q and H may also vary with time, and thus could be indexed by t, but for
notational convenience Q and H will not be indexed.
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r(t) = z(t) − Hx̂(t|t− 1),

= z(t) − ẑ(t) (2.23)

is the residual vector with residual covariance matrix,

S = HP(t|t− 1)HT + R. (2.24)

The state vector x̂ for this research is defined as

x̂ =
[

x y ẋ ẏ h
]T

, (2.25)

where x and y are the two spatial dimensions, ẋ and ẏ are the corresponding spatial

velocities, and h is the hyperspectral-based track class ID. The state transition matrix

is

Φ =























1 0 Ts 0 0

0 1 0 Ts 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























, (2.26)

where Ts is the sampling interval. It accounts for constant velocity and constant track

class ID. The measurement model for a panchromatic observation is

Hvideo =





1 0 0 0 0

0 1 0 0 0



 , (2.27)

and it updates the position states (x, y). The measurement model for a hyperspectral

observation is
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HHSI =











1 0 0 0 0

0 1 0 0 0

0 0 0 0 1











, (2.28)

which updates not only the position states (x, y), but also the track spectral ID h.

The process noise covariance is defined as

Q =
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q, (2.29)

where the choice of q is considered a tuning process, determined empirically such that

the dynamics model accurately represent the truth trajectories. The observation z

and measurement noise covariance R are used to update and propagate the track

states and process statistics using the Kalman filter equations in Eqs. (2.22).

If the Gaussian assumption cannot be justified, such as in the case of nonlinear

target dynamics or measurement processes or both, the basic Kalman filter will not

suffice. Nonlinear or linearized filters should be used instead [27]. One commonly used

approach is the extended Kalman filter. It involves a linearization process whereby

the nonlinear function is linearized around the current estimate.

2.3.5 Gating Computations. Most image-based trackers make use of gat-

ing to reduce the number of operations that trackers must perform by eliminating

observation-to-track associations that are unlikely. The tracker processes only those

observations within a specified gate. The predicted measurement for a track is the

center of the kinematic gate, and observations within the gate are candidates for track

update. Fig. 2.12 illustrates gating for two closely spaced targets and four observa-
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tions. Note that the gates may overlap for closely spaced targets. Gating computations

establishes kinematic gates and performs gating in the following general manner.17

Gating computations implements kinematic gating on both panchromatic video

observations and the kinematic information of hyperspectral observations18 (more on

this in Sec. 3.4). The gate threshold G determines the “probability that the true

measurement will lie within the gated region” [3]. The true measurement conditioned

on the past is normally (Gaussian) distributed with PDF given by19

p[z(t+ 1)|Zt] = N[z(t+ 1); ẑ(t+ 1|t),S(t+ 1)]. (2.30)

Then the true measurement will be in the following region

V (t+ 1, G) =
{

z : [z − ẑ(t+ 1|t)]TS(t+ 1)−1[z − ẑ(t+ 1|t)] ≤ G
}

, (2.31)

with probability determined by the gate threshold G. The region V defined by

Eq. (2.31) is the gate or association region. It is also known as the ellipse (or el-

lipsoid) of probability concentration—the region of minimum volume that contains a

given probability mass. The left hand side of the inequality in Eq. (2.31) is the Maha-

lanobis distance between measurement z and the best estimate of this measurement

ẑ [3].

Gating computations obtains the gate threshold from a table of the Chi-square

distribution (Table 2.1), since the quadratic form in Eq. (2.31) that defines the gate

region is Chi-square distributed with number of degrees of freedom equal to the mea-

17The system also performs spectral gating. Sec. 3.8 discusses the spectral gating implementation
in detail.

18In this context, hyperspectral measurements are not synonymous with hyperspectral observa-
tions. Hyperspectral measurements refer to the hyperspectral input data in Fig. 2.1. Hyperspectral
observations refer to the components within in the hyperspectral image chip (more on this in Sec. 3.4).
For panchromatic video, measurement and observation are synonymous.

19The symbol N(x;µ,S) stands for the normal (Gaussian) PDF with argument random variable x,
mean µ, and covariance matrix S.
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G 1 4 6.6 9 9.2 11.4 16 25
g 1 2 2.57 3 3.03 3.38 4 5

N
1 0.683 0.954 0.99 0.997 0.99994 1
2 0.393 0.865 0.989 0.99 0.9997 1
3 0.199 0.739 0.971 0.99 0.9989 0.99998

Table 2.1: The table provides values of the probability mass PG given the gate
threshold G and measurement dimension N .

surement dimension N . The gate probability PG, or the probability that the (true)

measurement will fall in the gate, is described by the following equation [3]:

PG = P {z(t+ 1) ∈ V (t+ 1, G)} . (2.32)

The equation G = g2 refers to the number of standard deviations of the gate. The

volume V of the gate region V from Eq. (2.31) corresponding to the threshold G = g2

(“g-sigma” gate) is

V(t+ 1) = cN |GS(t+ 1)|1/2 = cNg
N |S(t+ 1)|1/2, (2.33)

where cN is the volume of the unit hypersphere for dimension N (c1 = 2, c2 = π, c3 =

3π
4
, etc.). In general,

cN =
πN/2

Γ(N/2 + 1)
, (2.34)

where Γ(·) is the gamma function.

2.4 Distance Measures

A distance measure (also known as similarity measure) is a function that gives

a generalized scalar distance between two points. The main idea is to use a distance

measure to define the distance between class samples in order to determine a class’

nearest neighbors. Nearest neighbor computations determines the sample-wise dis-
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Figure 2.13: In this example, there are three classes, labeled a, b, and c. Distances
between samples of class a and b, which are represented by solid lines, are computed
using the distance measures described in this section.

tances for all class pairs (Fig. 2.13) and summarizes these distances in a meaningful

way to provide a scalar distance for each class pair.

One distinction worth noting is that not all distance measures are metrics. Given

two points A and B and a distance function d, a metric must have the following

properties:

• Nonnegative: d(A,B) ≥ 0

• Reflexive: d(A,B) = 0 if and only if A = B

• Symmetric: d(A,B) = d(B,A)

• Triangle Inequality: Given a third feature C, d(A,B) + d(B,C) ≥ d(A,C)

Since these properties are restrictive, the nearest neigbor computations element uses

other “non-metric” distance measures. This research evaluates distance metrics (Eu-

clidean, Manhattan/cityblock, Chebyshev, and Canberra) and other non-metric dis-

tance measures (correlation and squared chord). Given an M × N matrix S, where

the rows are N -dimensional sample vectors s1, s2, . . . , sM of a class, the following list

2-37



defines the different distance measures between sample vector smc1 of class c1 and

sample vector smc2 of class c2
20 [26]:

1. The Euclidean metric is the straight-line distance between two samples. An

often underlying assumption is that the samples are in Euclidean space, which

makes the Euclidean distance an appropriate distance metric. Although com-

monly used in practice, the Euclidean distance has some shortcomings. First,

it assumes the Euclidean assumption is valid. Second, in the case of noisy

data, it accumulates the noise power. This is particularly troublesome for high-

dimensional noisy data, as is the case with hyperspectral data (especially in

the visible blue and short-wave infrared regions). The Euclidean distance is a

special case of the more generic lp-norm, where p = 2 and the squared form is

defined as

dist(sc1 , sc2)
2 = (sc1 − sc2)(sc1 − sc2)

T . (2.35)

2. Manhattan distance, also known as the “Taxicab” distance, means to take a

‘city walk’ to get from one point to another. One can only move along the

direction of an orthogonal axis from the starting point to the final destination.

The Manhattan distance is also a metric and is defined as

dist(sc1 , sc2) =
N
∑

k=1

|xc1k − xc2k|, (2.36)

where |·| is the absolute value.

3. The correlation distance is one minus the sample correlation between points

(treated as sequences of values). It measures the disagreement between sc1 and

sc2 and is defined as

20For notational convenience, m is dropped from the expressions.
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dist(sc1 , sc2) = 1 − (sc1 − s̃c1)(sc2 − s̃c2)
T

[(sc1 − s̃c1)(sc1 − s̃c1)
T ]1/2[(sc2 − s̃c2)(sc2 − s̃c2)

T ]1/2
, (2.37)

where s̃c1 = 1
N

∑

k

sc1k and s̃c2 = 1
N

∑

k

sc2k.

4. The Chebyshev distance, also known as the l∞ norm, is a metric where the

distance between two vectors is the largest difference (i.e.,made into positive

values) along any coordinate dimension. It is defined as

dist(sc1 , sc2) = lim
p→∞

(

N
∑

k=1

|sc1k − sc2k|p
)1/p

. (2.38)

5. The Canberra metric makes a summation of a series of ratios between corre-

sponding planar values. It considers not only the distance between two points,

but also its relation to the ‘origin.’ It is defined as

dist(sc1 , sc2) =
N
∑

k=1

[ |sc1k − sc2k|
|sc1k + sc2k|

]

. (2.39)

6. The squared chord is a signal-to-noise dissimilarity measure, defined as

dist(sc1 , sc2) =
N
∑

k=1

(
√
sc1k −

√
sc2k)

2 (2.40)

2.5 Distances between Data Distributions

The previous section provides several ways to represent the hyperspectral data

directly in terms of distance (similarity) measures between pairs of samples. This

section discusses two categories that summarize these distances. The nearest neighbor

computations element of Fig. 2.1 uses the “summary” distances to determine the

nearest neighbors for each class.
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2.5.1 Methods using Functional Form. Two common methods that mea-

sure the similarity of two probability distributions are Kullback-Leibler divergence

and the Bhattacharyya distance. Both are statistical distance measures and require a

functional form of the probability distributions. Since the distribution of the hyper-

spectral data is not well-modeled as Gaussian, accurate parametric modeling of the

195-dimensional joint PDF is difficult to achieve, especially since a large number of

samples is required. Hence, these methods are not appropriate for this research.

2.5.2 Linkage Distances. Clustering algorithms makes no assumptions

about the statistical distribution of the data. Instead, they require a similarity mea-

sure between (disjoint) classes of samples, based on the pairwise similarities among

the samples of class pairs (provided in Sec. 2.4). The similarity measure between

disjoint classes are called linkage distances. Three common linkage distances are [18]:

1. Single linkage takes the interclass similarity to be that of the closest pair:

d(c1, c2) = min(dist(sc1 , sc2)), c1 ∈ (1, . . . , C), c2 ∈ (1, . . . , C). (2.41)

2. Average linkage uses the average similarity between classes:

d(c1, c2) =
1

Mc1Mc2

Mc1
∑

u=1

Mc2
∑

v=1

dist(suc1, svc2). (2.42)

3. Centroid linkage uses the Euclidean distance between centroids of each class

pair:

d(c1, c2) = ‖s̄c1 − s̄c2‖ (2.43)

where s̄c1 = 1
Mc1

Mc1
∑

u=1

suc1 , ŝc2 is defined similarly.
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2.6 Performance Analysis

As discussed in Sec. 1.1, the main goal of this research is to answer the ques-

tion: When augmented by hyperspectral data, is the performance of the kinematic-only

tracker improved? Performance analysis provides a quantitative comparison between

the performance of the kinematic-only and the hyperspectral-augmented trackers.

The analysis can be divided into classification and hyperspectral-augmented tracking

performance:

2.6.1 Classification Performance. The performance of the tracker, i.e. how

well the tracker is tracking the true target of interest, is affected by the accuracy of the

classification. In the context of image classification [10], accuracy defines “correctness”

and measures the agreement between truth and prediction. If the classified image

corresponds closely with truth, it is said to be “accurate.” The usefulness of a classified

image is related not only to its correctness, but also to the precision with which the

user can make statements about specific points depicted on the image. For example,

this research categorizes vehicles based on color, make, and model, as opposed to

blue, red, or black vehicle classes. Clearly, it is more difficult to assign detailed

classes correctly than to assign general classes correctly.

Classification error is the assignment of a pixel belonging to one class21 to an-

other class during the classification process [10]. There are two common ways of

reporting classifier performance [24]:

1. Non-equal weighted or traditional/biased classification accuracy (NEWA)

NEWA =
M
∑

m=1

C
∑

c=1

1( if xℓ
m ∈ Xc and ℓ = c)

Mc

(2.44)

where c is the class under evaluation, Mc is the number of samples in class c,

and 1 is an indicator function that evaluates to 1 if xℓ
m is in class Xc and the

21Correct pixel class assignment is determined by truth.
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predicted class label ℓ = c. NEWA is easy to compute; however, it does not

consider the importance of each class. The results are therefore biased towards

large classes.

2. Equal-weighted classification accuracy (EWA)

EWA =
1

C

M
∑

m=1

C
∑

c=1

(1 if xℓ
m ∈ Xc and ℓ = c)

Mc

. (2.45)

EWA allows each class to participate equally in the evaluation of the classifier,

regardless of its size. Though the weighting may not be the most appropriate for

each class, EWA is widely used in the literature and provides better evaluation

than NEWA [24].

The standard form for reporting the classification error is the error matrix (also

referred to as the confusion matrix or contingency table) because it identifies not only

errors for each class, but also misclassifications22 by class [10]. To construct the error

matrix, the true and predicted class memberships are evaluated on a pixel-by-pixel

basis. The error matrix consists of a C × C array, where C represents the number

of classes. The column of sums on the right-hand edge of the matrix, known as row

marginals, gives total numbers of pixels in each class in the true image; the row of

sums at the bottom, known as column marginals, shows total pixels in each class in the

classified image. The sequence of values that extends from the upper left to the lower

right corner is referred to as a diagonal and shows the number of correctly classified

pixels on a class-by-class basis.23 The sum of the diagonals is given in Eq. (2.46),

Diagonal Sum =
C
∑

c=1

Xc,c. (2.46)

An example is shown in Fig. 2.14. From the error matrix, the NEWA and EWA can

be calculated:

22Misclassifications are due to confusion between classes.
23Nondiagonal values provide the distribution of classification errors.
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Sum of 
Diagonals

= 45201921
Column

Marginals

241851C
150114B
212316A
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Marginals

CBA

Classified As

T
ru

th
Figure 2.14: In this problem, there are 3 classes, labeled A, B, and C. The table
tabulates the hypothetical classification results. Column marginals sum the total
pixels classified as each class in the image. Row marginals sum the true total pixels
for each class. The lower right number is the sum of the diagonal entries, given by
Eq. (2.46).

NEWA =
45

21 + 15 + 24
× 100 = 75% (2.47)

EWA =
16
21

+ 11
15

+ 18
24

3
× 100 = 74.8% (2.48)

As seen from Eqs. (2.47) and (2.48), EWA often judges harder than NEWA. The

higher the accuracy, the more samples belonging to a given class are actually classified

correctly. Furthermore, high accuracy means that bias is low24 and that the variability

of estimates is low.

2.6.2 Hyperspectral-Augmented Tracking Performance. Evaluation of MTT

systems uses measures of effectiveness (MOEs) [8]. This research performs a Monte

Carlo evaluation in which truth target trajectories are known and are used to gener-

ate observation data so that the correct (target-generated) observations are known.

A track-to-truth assignment method is the first step in the evaluation of a tracking

system. The auction algorithm performs track-to-truth assignment for the confirmed

tracks. The assignment solution produces track-to-truth pairings as well as tracks

and targets that are not paired. Then, a measure of fit (MOF) between these tracks

24The estimated values are consistently close to an accepted reference value.
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and truth is computed. Those pairings that satisfy an acceptable criterion for the

MOF, such as a kinematic gate on the Mahalanobis distance, populate a global track-

to-truth assignment matrix. The track-to-truth assignments are used by difference

computations between true target and track estimated quantities. Difference compu-

tations lead to computation of metrics and error statistics. An example of a track

metric is a relatively simple numerical score that can be given to each Monte Carlo

run using the track-to-truth assignment matrix. An appropriate time interval (∆t)

is defined and a point is awarded at each interval time to each target for which the

currently assigned track is the same as the assigned track ∆t before. No points are

awarded if there is no assigned track at either time or if there was a switch over

the time interval. Thus, rapid track confirmation is rewarded, and track switching is

penalized.

Other MOEs that use observation data are also useful. They are required for systems

in which observation attributes (e.g., hyperspectral data) are also used for target type

identification/discrimination [8]. One such MOE is the probability of correct target

identification, which determines the percentage of frames that a track is correctly

identified.

2.7 Summary

This chapter not only reviews several related literature works, but also describes

the various system elements and their functions. Furthermore, it discusses several

commonly used methods and the rationale behind their use. The next chapter dis-

cusses the methodology in the context of these methods, provides various innovative

procedures and rules, and expounds on the novel ideas of this research. The method-

ology is presented by following the flow of the input data through the system. The

chapter concludes with a discussion on the various performance measures.
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III. Methodology

This chapter provides the methodology that analyzes the principles of image

classification and tracking methods, rules, and postulates employed in the ex-

perimental design. It includes a collection of theories, concepts, and ideas as they

relate to the proposed solution. Most importantly, it addresses the rationale and

philosophical assumptions that underlie this particular research.

Aside from implementing a tracking system augmented with hyperspectral data,

this thesis presents several novel ideas. First, the spectral gating work develops a

method for calculating the nearest neighbors of a target class. The observation-to-

track association gates a hyperspectral observation using the nearest neighbors of

the track’s class ID. Second, the observation-to-track association uses the sum of

weighted kinematic and spectral distances as a cost function—the cost of assigning

a hyperspectral observation to a track. Third, a filtering method is applied to the

self-organizing map (SOM) to remove noisy samples for each vehicle class that are

highly influenced by background spectra.

This chapter traces the flow of the input signals through the system, from the

simulation of the synthetic sensor data to classification to data association. Fig. 3.1

provides a breakdown of the system elements. Sec. 3.1 describes hyperspectral and

panchromatic video data processing, HSI sensor data calibration and atmospheric cor-

rection, and panchromatic video sensor data processing and measurement formation.

This section discusses measurement formation, processing of hyperspectral and video

input data, generation of the HSI chip, and removal of irrelevant features or dimen-

sions (i.e., atmospheric water absorption bands). Since the system utilizes all the

dimensions of the hyperspectral data, spectral feature extraction is a placeholder for

future hypespectral exploitation work. Spectral matching and identification (ID) per-

forms two pixel classification methods on the HSI chip (Sec. 3.3) based on a predefined

feature model stored in a spectral library (Sec. 3.2). Observation-to-track association

determines one or more regions of contiguous hyperspectral pixels (using the class

ID) known as hyperspectral observations. Furthermore, observation-to-track associ-
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ation performs observation-to-track assignments for both hyperspectral observations

and kinematic observations obtained from panchromatic video data (Sec. 3.4). Track

maintenance uses both types of observations to initiate, confirm, and delete tracks

(Sec. 3.5). In turn, filtering and prediction uses the observations to update existing

tracks (Sec. 3.6). When needed by data processing and observation-to-track associ-

ation, filtering and prediction provides kinematic information and process statistics

for a specified track. Gating computations determines the gate thresholds for each

existing track, which is then used by the observation-to-track association to elimi-

nate observations that are unlikely for that track (Sec. 3.8). For spectral gating of

hyperspectral observations, the spectral nearest neighbors computations provides the

nearest neighbors of each class to gating computations (Sec. 3.7). The entire process
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Figure 3.1: This chapter organizes the system elements based on the flow of the
input signals through the entire system. Panchromatic video observations only flow
through the tracking elements, whereas hyperspectral observations first flow through
the hyperspectral image (HSI) elements (for classification), then through the tracking
elements.
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starts over again after formation of a new HSI chip or receipt of a new kinematic

observation.

3.1 Hyperspectral and Panchromatic Video Measurement Formation

and Data Processing

Because of signal preprocessing challenges involved with real data (e.g., dif-

ference in the frame rates of the hyperspectral and panchromatic video sensors and

atmospheric correction of hyperspectral data), the system uses synthetic images of an

urban environment. To create a realistic representation of the sensor data and sensor

dynamics, the measurement formation and data processing element emulates what

would be experienced in a real remote sensing situation. Two main representations

that significantly impact the level of realism are the materials on the Earth’s surface

(Sec. 3.1.1) and the sensor dynamics (Secs. 3.1.2 and 3.1.3).

3.1.1 Scene Synthesis. As shown in Fig. 3.2, the background scene is an ide-

alized urban setting, consisting of two main intersections, roadways with concrete and

grassy medians, buildings, overhanging trees, and parking lots. The scene generator

utilizes five background material types typically found in urban settings (concrete,

roadway asphalt, grass, trees, and roofing tar) and generates two different images of

the scene, one representing panchromatic video and the other representing hyperspec-

tral imagery. The background panchromatic image consists of a stationary 600× 600

pixel region, where the scene generator assigns one of the five background material

types to each pixel. This fine grid represents a 0.2m spatial resolution for the video

camera. The generator down-samples the panchromatic image by 5 in both spatial

dimensions, creating a 120 × 120 hyperspectral image. Each resulting hyperspectral

pixel has a 1m spatial resolution1 and consists of a linear mixture of the material from

1This resolution is typical of hyperspectral imagery for medium altitude sensors.
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Figure 3.2: The background scene consists of a stationary 600 × 600 pixel region.
There are two intersections; the view of the lower right intersection is occluded from
above by a tar-covered roof. A gray rectangular region, representing either a parking
lot or building, consists of concrete spectrum; a green region consists of grass or tree
spectrum; and the roadways consist of asphalt spectrum.

the 25 panchromatic pixels within its 1× 1 pixel region.2 The following computes the

linear mixture:

smp =
C
∑

c=1

scac, (3.1)

where smp is the spectrum of the mixed pixel, sc is a vector of known pure spectrum,

and ac is the abundance or proportion of class c in the 5×5 panchromatic pixel region.

2This is equivalent to a 5 × 5 panchromatic pixel region.
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The expressions ac ≥ 0 for c = 1, . . . , C and
∑

c

ac = 1 constrain the abundance of

Eqn. (3.1).

3.1.2 Simulation of Sensor Data Measurement Formation. The system sim-

ulates two input sources—an HSI sensor and a panchromatic video camera [6]. Both

are co-boresighted and view the urban scene from a nadir3 perspective, a common

practice in remote sensing. The system assumes the airborne platform that houses

both sensors is hovering or loitering over the urban scene.

3.1.2.1 Hyperspectral Sensor. The hyperspectral sensor model is a

traditional dispersive slit scanning instrument, using a pushbroom4 approach for im-

age acquisition. The focusing slit reduces the image height to the equivalent of one

pixel and the image width to a row of pixels along the slit. A scan line consists of the

1 × N group of pixels. The sensor mechanically steers a mirror in a fixed direction,

thus sweeping a line through the scene and exposing the imager once at each time

step. With each successive hyperspectral scan line, the captured image grows from

the bottom up; hence, the sensor “recycles” the mirror to a home position in order

to start the next scan. This temporal disparity throughout a scene contributes to

the complexity of tracking moving targets. The simulation uses parameters conser-

vatively derived from commercially available instruments with precision mirror servo

and encoder subsystems. Latencies due to moving the mirror to an adjacent scan

line and exposing the imager yield 100 lines acquired per second. Commanding the

mirror to travel to an arbitrary position without image acquisition employs a velocity

equivalent to 240 lines traveled per second plus a 10ms settling latency.

This research evaluates two sensor modes, which differ in mirror control method-

ology. The pushbroom implementation simulates the continuous scan mode generally

employed by this family of imagers. The hyperspectral scan mirror sweeps the entire

3Nadir is the point on any given observer’s celestial sphere diametrically opposite of one’s zenith.
4Pushbroom gets its name from the sweeping movement of the camera over an area.
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scene in one direction, and recycles to the bottom of the scene to begin the next

scan immediately. Notably, the pushbroom model does not use information from the

tracker to steer the mirror to locations of existing tracks; hence, target revisit rates

are sub-optimal. The region-of-interest (ROI) implementation maximizes target re-

visit rates by exploiting track state information. An ROI contains adjacent scan lines

bounded by the target position and uncertainty in the state information. The simu-

lated sensor applies realistic mirror scanning parameters to achieve realistic latencies

when traveling between ROIs and when recycling to the home position. Performance

comparison of the two implementations can drive future design of hyperspectral sen-

sors. This is the goal of “performance-driven sensing.”

3.1.2.1.1 Atmospheric Correction. In this research, the extent

of atmospheric correction involves only the removal of the water absorption bands

from the collected data. Water in the atmosphere is the main absorber of sunlight

and responsible for about 70% of all atmospheric absorption of radiation, mainly in

the infrared region where water shows strong absorption. Water vapor is an impor-

tant factor in hyperspectral imaging for remote sensing because it absorbs radiation

differently in different spectral bands. During atmospheric correction, data are ir-

recoverably lost around the atmospheric water absorption bands located at 1400 and

1900nm (Fig. 3.3).

3.1.2.2 Panchromatic Video Sensor and Target Trajectory Generation.

A parametric measurement generator uses a straightforward motion segmentation

algorithm. As discussed previously in Sec. 2.3.1, a centroid tracker works effectively

when a target is about 2-10 video pixels. If a target is on the order of hundreds of pix-

els, it often has internal details or varying pixel intensity, and a more suitable tracker

is a correlation tracker. Since the system simulates a target with approximately 200

pixels, it generates detections consisting of 200 panchromatic pixels. But for simplic-

ity in the target tracking implementation (i.e., implementing a centroid tracker versus
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Figure 3.3: Water in the atmosphere is responsible for 70% of the known absorption
of incoming sunlight, particularly in the infrared region. The top plot shows the
absorption wavelength (where gaps in the curve exist) around 1400 and 1900nm. The
bottom plot shows the feature index (or spectral band) after the absorption bands
are removed. Each unit in the feature index is 10nm wide.

a correlation tracker), the detections are generated with uniform intensity. Since a

centroid tracker works well for such detections, it is employed in this research.

The measurement generator resamples the true target trajectories at 10Hz with

additive normally distributed noise. Measurement dropouts occur due to target occlu-

sion from vegetation and structures. A user-defined setting for a minimal detectable

velocity simulate a change detection algorithm. However, the system neglects other

common effects, such as false measurements due to parallax and merged observations

of closely spaced targets.

3.1.3 Data Processing. The system implements an innovative and novel

approach when it generates hyperspectral observations from the imaged scene. When

the tracker confirms a track, the data processor prompts the hyperspectral sensor to

scan the track region. Note that after a track is updated by both video and hyper-
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Figure 3.4: The data processor forms an HSI chip using a track’s predicted position
and uncertainty. The chip shown here consists of two vehicles (one red and one green)
and is an example of a fused chip, where the bounded regions for the two tracks
overlap. The black rectangular regions (lower left and upper right) are outside of the
region of interest and no data are associated with them. The chip, therefore, can be
non-rectangular in shape.

spectral observations, the data processor uses predicted track states for subsequent

scanning of the track region. Hence, the sensor continually scans the track region

throughout the life of the track. If there is more than one track region in the image,

the hyperspectral sensor scans the regions one at a time. The data processor obtains

the track’s position and uncertainty (propagated to the time step of each collected

hyperspectral scan line) from the tracker and keeps all the scan lines that intersect the

track. The region that forms from the intersected lines consists of the track’s centroid,

bounded by the standard deviation (square root of the covariance) of the predicted

position states in both spatial dimensions.5 The group of hyperspectral pixels within

the bounded region is called an HSI chip6 (Fig. 3.4). Formation of the chip consists

of several rules:

5In the pushbroom implementation, the sensor scans all lines in the scene, whereas in the ROI
implementation, the data processor commands the hyperspectral sensor to steer its mirror to the
region prior to line scanning.

6An HSI chip is a group of hyperspectral pixels considered likely to contain one or more targets.
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• A chip spans two spatial dimensions by including multiple adjacent lines (and

therefore multiple discrete time steps). The data processor fuses singleton chips

if they are adjacent or overlapped at any time step (see Fig. 3.4).

• When the current line scan is outside or no longer intersecting an existing chip,

the data processor forms the chip.

• The system immediately exploits a chip with one target track as soon as the

data processor forms the chip. For a fused chip, the system cannot process the

chip until the data processor forms all overlapping target tracks.

After chip formation, the data processor sends the chip to the classifier for pixel

classification.

It is worth noting that the simulated hyperspectral sensor captures a scan line

instantaneously, i.e., even if a target is in motion, it is considered stationary during

integration time.7 If a scan line is not instantaneous, temporal spectral smearing

occurs, where the reflectance value for each spectral band changes during integration

time. One way to account for this smearing effect consists of capturing a scan line

at the beginning and another scan line at the end of integration time and taking the

average of both lines. However, since integration time is approximately 10ms, it is

reasonable to assume that each scan line is acquired instantaneously. Spatial smearing

also occurs with hyperspectral data. As the hyperspectral sensor captures a scan line

at each discrete time step while a target is in motion, the sensor stretches or smears

the track across the image, as shown in Fig. 3.5. The observation-to-track association

accounts for this effect in Sec. 3.4.

3.2 Spectral Library

The spectral library is a synthesized version of real data, consisting of 41 ve-

hicle (Table 3.1) and 5 background classes (Table 3.2). Vehicle spectra are courtesy

of Sensors Directorate, Air Force Research Laboratory (AFRL/RY), which obtained

7Integration time is the time during which the sensor observes a target.
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(a) Hyperspectral line scanning.

(b) HSI chip of vehicle.

Figure 3.5: In this example, the hyperspectral sensor scans lines from west to east
(a). The red vehicle is moving in the north easterly direction (b). As the sensor scans
lines over the vehicle, the chip appear stretched or smeared. The size of the chip
depends on sensor dynamics and the velocity of the vehicle.
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the data using an Analytical Spectral Devices Inc. (ASDI) FieldSpecr Spectrometer.

Background spectra are obtained from the United States Geological Survey (USGS)

Digital Spectral Library [11] and from previous hyperspectral field analysis [29]. The

FieldSpecr and USGS spectral library data have a spectral range of 350 − 2500nm

with a spectral resolution of 1nm, yielding 2,151 spectral bands. To simulate more

typical hyperspectral data (e.g., National Aeronautics and Space Administration/Jet

Propulsion Laboratory’s (NASA/JPL) Airborne Visible/Infrared Imaging Spectrom-

eter (AVIRIS) sensor [15]), the data processor resamples all class spectra to 10nm

spectral resolution, which produces 224 spectral bands for each hyperspectral mea-

surement. Additionally, the system removes the water absorption bands, previously

discussed in Sec. 3.1.2.1. Each measurement, therefore, ends up with 195 spectral

bands.

Table 3.1: The vehicle classes consists of 41 various vehicle types. AFRL/RY obtained

the vehicle spectra from volunteers using an ASDI FieldSpecr Spectrometer. No

methodology was implemented in the vehicle selection process.

Class Label Color Make Model

1 White Volvo 740 GL

2 Black Mitsubishi Montero

3 White Honda Accord

4 Black Jeep Grand Cherokee

5 Maroon Toyota Camry

6 Dark Blue Landrover Discovery

7 Blue Chevy Colorado

8 Gold Honda Odyssey

9 Silver Nissan Altima

10 Gold Honda Accord

11 Red VW Beetle

Continued on next page
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Table 3.1 – continued from previous page

Class Label Color Make Model

12 Silver Buick LaSabre

13 Sterling Buick Park Avenue

14 Silver Honda CRV

15 Light Gold Saturn SL2

16 Gold Nissan Maxima

17 Red Saturn SL2

18 Black Pontiac Grand Am

19 Silver Ford Focus

20 Gray with Black top Chrysler Sebring Convertible

21 Silver Cadillac DeVille

22 Black Chevy Equinox

23 Green Geo Prism

24 Black Ford Ranger

25 Brown Nissan Altima

26 Black Hyundai Sonata

27 Black Chevy Colorado

28 Maroon Chevy Malibu

29 Silver Jeep CJ7

30 Black Mazda Protege

31 Red Pontiac Vibe

32 Green Chevy Silverado

33 Blue with Black top Chrysler Sebring Convertible

34 Silver Mitsubishi Diamonte

35 Black Toyota Camry

36 Cranberry Ford Expedition

37 Blue Dodge Dakota

Continued on next page
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Table 3.1 – continued from previous page

Class Label Color Make Model

38 Red/Silver Dodge Ram

39 Gold Chevy Impala

40 Charcoal Gray Mazda Tribute

41 Gray Buick Regal

Class Label Material Type
42 Asphalt
43 Concrete
44 Grass
45 Tree
46 Roof
47 Unknown

Table 3.2: Background spectra are courtesy of USGS. The background spectra are
typical material types seen in an urban environment. The classifier uses the unknown
class for any pixel that does not fall into one of the 46 classes.

The FieldSpecr-collected vehicle spectra are from six location points consistent

with a nadir view (i.e., left and right hood, left and right roof, and left and right

trunk). Each location point consists of four samples, for a total of 24 spectral samples

per vehicle.8 Because of the purity of the point measurements from the FieldSpecr

and USGS spectral library data, the samples do not provide realistic training for the

classifier. Using the ROI implementation described in the previous section, the data

processor generates mixed pixels by running each vehicle individually through an ar-

bitrary trajectory9 (Fig. 3.6) and calculating the linear mixture (using Eq. (3.1)) of

each hyperspectral pixel in the chip for every chip formed. The data processor as-

signs the hyperspectral pixel to the class with the maximum number of panchromatic

8The exception is the set of two convertible vehicles (class 20 and 33). The FieldSpecr collected
only their hood and trunk samples, for a total of 16 spectral samples per vehicle.

9Because of the randomness in the sensor and process dynamics, each vehicle’s trajectory is
slightly different.
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Figure 3.6: For each vehicle, the data processor generates mixed pixels or noisy
data using an arbitrary trajectory. The mixed pixels for each vehicle are the samples
used in the spectral library.

pixels.10 The mixed pixels for each vehicle are the samples assigned to the vehicle’s

class in the spectral library. Finally, the data processor normalizes each hyperspectral

observation with its l2-norm to remove albedo effects for each pixel [30]. Albedo is

defined as the ratio of diffusely reflected to incident electromagnetic radiation. It is

a more specific form of the term reflectivity. Urban areas in particular have very un-

natural values for albedo because of the many human-built structures which absorb

light before the light can reach the surface.

10If two classes equally have the maximum number of panchromatic pixels in the 5×5 panchromatic
pixel grid, then the data processor does not assign the hyperspectral pixel to a class.
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3.3 Spectral Matching and Identification (ID)

The spectral matching and ID element matches each hyperspectral pixel in the

HSI chip with prototype vectors that represent each class in the spectral library. It

assigns the unclassified pixel λ (see Fig. 1.1) with the class label w of the nearest

prototype vector in the Euclidean sense, as described in the following equation:

w = arg min
c

√

√

√

√

N
∑

n=1

(λn −mc
n)2, (3.2)

where mc is a prototype vector with class label c ∈ 1, . . . , C, and N is the number of

dimensions.

This research evaluates two classification approaches—fuzzy c-means (FCM)

and the self-organizing map (SOM). Spectral matching and ID implements the FCM

as a supervised classifier, whereas it implements the SOM in two steps: (1) it performs

unsupervised learning or clustering, then (2) it uses the SOM’s prototype vectors and

known class labels of target and background spectra to classify pixels.

3.3.1 Fuzzy C-Means (FCM) Clustering. As a supervised classifier, spectral

matching and ID performs the FCM algorithm (Fig. 3.7) on the samples for each

class. At the completion of the iterative procedure, each class has K cluster centers

or prototype vectors.11 For each unclassified pixel λ, the classifier assigns the class

label c of the nearest prototype vector µc
k in a Euclidean sense. This computation

follows that of Eq. (3.2).

3.3.2 Self-Organizing Map (SOM) Clustering. Spectral matching and ID

implements the SOM classification approach in two stages. First, it performs unsu-

pervised learning or clustering on all samples based on the algorithm described in

Fig. 3.8, with no knowledge of the samples’ class label. The SOM algorithm assigns a

11Throughout the rest of this thesis, cluster centers or means will be referred to as FCM prototype

vectors.
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BEGIN
Choose the number of clusters K, the weighting exponent b,
and the tolerance ǫ;
Randomly initialize clustering membership matrix U;
DO

Compute prototype vector µc
k, for all k, using Eq. (2.4);

Update matrix U using Eq. (2.3);
UNTIL (

∥

∥Unew − Uold
∥

∥ < ǫ)
END

Figure 3.7: Spectral matching and ID performs the fuzzy c-means iterative proce-
dure on the samples of each class in the spectral library. It pre-computes the FCM
prototype vectors µc

k using the following parameters: K = 3 (i.e., 3 prototype vectors
per class), b = 2, and ǫ = 1 × 10−8. The K value is chosen through experimentation,
based on the number of distinct FCM values observed when K is varied from 1-10.
The values for b and ǫ are based on typical values used in the literature.

weight or prototype vector12 mℓ to each output neuron ℓ and updates each prototype

vector using all samples in the spectral library. Furthermore, the algorithm maps

each sample s to an output neuron ℓ on the 30 × 30 rectangular lattice, as shown

in Fig. 3.9. Another way to visualize the SOM is shown in Fig. 3.10. There is no

restriction on the number of classes that can be mapped to an output neuron. Each

output neuron can represent more than one class because the two-dimensional class

distributions can overlap.

Because of the self-organizing property of the SOM (discussed previously in

Sec. 2.2.3), the algorithm maps class samples highly influenced by background spec-

tra to the neurons located in the “tail” of the class distribution. These samples have

the least information about the class; hence, removing or filtering that part of the

distribution should reduce misclassification errors. The SOM filtering procedure de-

scribed below is based on the SOM’s ability to preserve the geometric relationships

among class samples in the 195-dimensional input space on the 2-dimensional rectan-

gular lattice. Neurons that are physically near each other are based on the similarity

12Throughout the rest of this thesis, weight vectors will be referred to as SOM prototype vectors.
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BEGIN Ordering Phase
Randomly initialize weight vectors mi(0);
Choose relatively large initial learning rate α0 and
neighborhood radius σ0;
DO

Determine winner w using Eq. (2.5) and Eq. (2.6);
Update mℓ using Eq. (2.7);
Decrease learning rate α(t) and neighborhood radius σ(t);

UNTIL Number of ordering steps
END
BEGIN Tuning Phase

Keep neighborhood radius σ fixed;
DO

Determine winner w using Eq. (2.5) and Eq. (2.6);
Update mℓ using Eq. (2.7);
Decrease learning rate α(t) very slowly;

UNTIL Number of tuning steps
END

Figure 3.8: Spectral matching and ID performs clustering on all samples in the
spectral library. It pre-computes the SOM prototype vectors mℓ using the following
parameters: The ordering phase takes 13,800 steps, where the learning rate α(t)
and neighborhood radius σ(t) decrease linearly from 0.9 to 0.02 and from 15 to 1,
respectively. The tuning phase takes 41,400 steps, where α(t) decreases linearly from
0.02 to 0, and σ(t) stays at 1. These parameters were chosen using the approach
described in Sec. 2.2.3.2 and in [22].

of the hyperspectral samples mapped to the neurons. The SOM filtering procedure

is a novel concept, and very little work in the classification literature deal with the

SOM in this manner.

Spectral matching and ID filters the samples located at the tails of the distribu-

tion by performing morphological operations on the map, as described in the following

procedure:

1. Treat the “original” map (Fig. 3.9(a)) as an image, where each output neuron

is a pixel.
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(a) Original map.
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(b) Filtered map.

Figure 3.9: The SOM consists of output neurons organized on a rectangular lattice.
The number of neurons is 900, or equivalently, the grid consists of 30 × 30 neurons.
The number of neurons may vary from a few dozen up to several thousands. For
fast processing, however, fewer than a thousand nodes is a reasonable number. Each
sample is mapped to a neuron, represented by a square in the two-dimensional grid.
(a) The 30 × 30 map prior to performing morphological operations. (b) The 30 × 30
map after performing morphological operations.
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Figure 3.10: In this map, a unit is also represented by a square, and the lighter the
color, the more samples are assigned to it. If the average distance of neighborhood
mℓ is small, a whiter shade is used. Dark shades represent large distances.

2. Create a separate two-dimensional map for each class, where the neurons are

only those containing the class samples. The pixel “intensity” is the number of

samples mapped to the corresponding neuron.

3. Determine the 8-connected components (Fig. 3.11) for each map of the back-

ground class. The connected component with the most number of samples (or

the highest density) represents the background class. The other connected com-

ponents (if any) are removed because they have less information on the class

under consideration. The procedure converts the modified map, which only con-

sists of the connected component that represents the class, into a binary mask.

It replaces all nonzero neurons with ‘0,’ and all zero neurons with ‘1.’

4. Apply each background binary mask to the separate map for each vehicle class,

i.e., perform a neuron-by-neuron multiplication between each background mask

and vehicle map. Doing so, the procedure removes the neurons common between
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Figure 3.11: Neurons are connected if their edges or corners touch. This means that
if two adjoining neurons are nonzero, they are part of the same object, regardless of
whether they are connected along the horizontal, vertical, or diagonal direction.

the vehicle and all background maps. These neurons have the least information

about the vehicle and the most influence from the background.

5. Determine the 8-connected components of the resulting vehicle map. The con-

nected component with the highest density represents the vehicle class. Any

other connected component is most likely due to outliers or background neu-

rons removed in step 3.

6. Combine all the maps into one map by concatenating the classes for each neuron.

Fig. 3.9(b) shows the combined image or “filtered” map (compare it to the

original map in Fig. 3.9(a)).

The second stage of the SOM approach classifies each pixel λ by assigning it

with the label of the pixel’s best-matching neuron.13 Pixels are classified by the

following rules:

1. If all of the samples mapped to the best-matching neuron belong to only one

class, then the classifier assigns the pixel with the class label. For example, in

Fig. 3.12, class 27 is the only class mapped to the top rightmost neuron (encircled

13In Sec. 2.2.3.2, the best-matching neuron of an unclassified pixel λ is the neuron with the nearest
prototype vector in a Euclidean sense.
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Figure 3.12: The number outside the parenthesis is the class label, and the number
inside the parenthesis is the number of samples assigned to the neuron.

in blue). If this is the pixel’s best-matching neuron, then the classifier labels

the pixel as class 27.

2. If the SOM algorithm maps samples from different classes to the best-matching

neuron, then the classifier assigns the pixel with the class label that has the

most samples. This implementation is a hard assignment and is a maximum-

likelihood (ML) classification. In Fig. 3.12, the SOM algorithm maps the two

classes (classes 18 and 24) to the fourth unit of the last column (encircled in

green). Since the maximum number of samples mapped to the unit is 12, which

belongs to class 18, the classifier labels the pixel as class 18.14

3. If the SOM algorithm does not map any sample to the best-matching neuron,

such as the second unit in the last column of Fig. 3.12 (encircled in black),

then the pixel is assigned an “unknown” label. This label does not necessarily

14If the two or more classes have the same maximum number of samples mapped to the unit, the
classifier labels the pixel with the first class on the list. This choice is arbitrary. A better approach
is to implement a multiple hypothesis tracker (MHT) [8], in which the tracker forms a hypothesis
for each potential class.
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imply that the unclassified pixel actually belongs to a vehicle class that is not

identified in the spectral library. At the very least, it is an indication that

the best-matching neuron is physically far from any class; therefore, the SOM

algorithm did not assign any sample to the neuron.

After classifying all the pixels in the chip, spectral matching and ID provides the HSI

chip with class ID to the observation-to-track association element.

3.4 Observation-to-Track Association

The observation-to-track association15 element takes observation-to-track pair-

ings that satisfy gating constraints and determines the observation-to-track assign-

ments. The observations are either hyperspectral or panchromatic.16 The system

generates panchromatic observations 10 times per second, whereas it generates hy-

perpsectral observations several seconds apart depending on track location and line

scanner dynamics. In the assignment process, the associator uses a distance measure

to assign observations to existing tracks. It uses a different distance measure for each

type of observation.

3.4.1 Panchromatic Video Observations. The associator propagates the

predicted position and uncertainty for each track to all of the possible times of the

observations. It calculates the Mahalanobis distance between observation i and track

j propagated to the time of observation i. The Mahalanobis distance17 is a function

15The observation-to-track association element will also be referred to as an “associator.”
16In this context, hyperspectral measurements are not synonymous with hyperspectral observa-

tions. Hyperspectral measurements refer to the hyperspectral input data of Fig. 3.1. On the other
hand, hyperspectral observations refer to the components in the HSI chip. For panchromatic video,
measurement and observation are synonymous.

17The quantity d
2

ij is actually a squared distance but, for convenience, it will be referred to simply

as a distance.
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of the measurement residual rij, and its associated covariance matrix Si:

rij = zi − Hx̂j, (3.3)

Sj = HPjH
T + R, (3.4)

d2
ij,kin = rT

ijS
−1rij, (3.5)

where d2
ij,kin is the observation-to-track kinematic distance. The associator normalizes

this distance using the l1-norm. The l1-norm is the sum of all the observation-to-track

distances. By normalizing with the l1-norm, a “percentage” of the total distance is

represented by each observation. The filtering and prediction element in Sec. 2.3.4

discusses Eqs. (3.3) and (3.4) in more detail. Eq. (3.5) is the distance measure used

by the auction algorithm.

3.4.2 Hyperspectral Observations. The associator determines the distance

measure for the hyperspectral observation by performing the following procedure:

1. Generate the hyperspectral observations. Since it appears that no previous work

on hyperspectral observations (based on predicted track state information) has

been developed, the steps describing the generation of the hyperspectral ob-

servations are formulated heuristically. The approach is based on target size

and computational complexity. Each pixel in the HSI chip can be treated as

a hyperspectral observation, but because a target consists of approximately six

hyperspectral pixels, the morphological operation performed reduces computa-

tional complexity.18

(a) Determine the 8-connected components for each class ID present in the

HSI chip. Each connected component consists of contiguous pixels with

the same class ID. The associator ignores components with fewer than 3

pixels because it considers them noise or background clutter.

18If the target size is at the sub-pixel level, then the morphological operation does not provide
additional information and could potentially merge targets.
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(b) Find the spatial centroid for each component.

(c) Obtain the unique time stamp for each hyperspectral scan line contained

within each component.

(d) Determine the measurement time for each spatial centroid by weighting

each time stamp with the number of pixels in the scan line and averaging

all the time stamps contained within the component. Weighting each time

stamp with the number of pixels in the scan line accounts for the spatial

smearing effect described in Sec. 3.1.3. Each resulting spatial/temporal

centroid is a hyperspectral observation. Fig. 3.13 shows an example of an

HSI chip with four connected components.

2. Determine the spectral distance19 of each observation-to-track pairing from a

pre-computed C × C matrix. The spectral distance between class pairs is cal-

culated using the following equation:

d2
ij,spec =

∥

∥

∥

∥

µc1
i − µc2

j

σc2
j

∥

∥

∥

∥

2

, (3.6)

where d2
ij,spec is the observation-to-track spectral distance and ‖·‖ is the Eu-

clidean distance. Eq. (3.6) uses a different µ for each type of classification

algorithm used by spectral matching and ID in Sec. 3.3:

Fuzzy C-Means. Take the mean of the fuzzy c-means for each

class µc
k, k = 1, . . . , K.

Self-Organizing Map. Take the mean of all the samples for each class µc.

The associator computes the class-wise Euclidean distance (Eq. (3.6)) using each

class mean and stores the distances in the C ×C matrix, where each row index

corresponds to the class ID of observation i and each column index corresponds

19The nearest neighbors computations element also computes this distance in Sec. 3.7. The asso-
ciator uses the spectral distance as part of the cost in the observation-to-track assignment, whereas
the nearest neighbor computations element uses the distance to determine the nearest neighbors for
each class.
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Figure 3.13: In this example, M1, . . . ,M4 are the four hyperspectral observations
formed. Color of the region has no meaning and only provides a means to distinguish
among different regions. The symbol ‘*’ represents the centroid of each component.

to the class ID of track j. Note that Eq. (3.6) assumes the hyperspectral image

bands are uncorrelated. This is known to be false. However, because each class

has relatively few representative samples, its covariance matrix is not invertible

(i.e., the matrix is singular). The spectral Mahalanobis distance (Eq. (3.6)) is

a unitless distance that fits within the current tracking paradigm. One way to

mitigate this false assumption is simply to use the kinematic distance as the

distance measure. This is accomplished by setting the weighting factor γ to

zero, as described in the next step.

3. Obtain the position and uncertainty for each track (propagated to the mea-

surement time of each centroid) from the tracker. Using Eqs. (3.3)-(3.5), the

associator computes the Mahalanobis distance d2
ij,kin for each hyperspectral ob-

servation.

4. Weight the spectral distance d2
ij,spec and kinematic distance d2

ij,kin and calculate

the overall distance using the following equation:
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d2
ij = (γ)d2

ij,spec + (1 − γ)d2
ij,kin, (3.7)

where γ is the weighting factor for the spectral distance d2
ij,spec. By having

different values of γ, the associator can vary the influence of the spectral and

kinematic information on the data association. Eq. (3.7) is the distance measure

used by the auction algorithm.

In the auction algorithm (Fig. 3.14), the associator uses the calculated distance

(corresponding to the type of observation being processed) as the cost of assigning

an observation to a track. The auction algorithm is an iterative process, in which

each iteration consists of the bidding and assignment phase. The process terminates

when the algorithm obtains a complete assignment. At the completion of the auction

algorithm, one of three outcomes occurs:

1. Each observation is assigned to a track.

2. More observations are available than tracks; therefore, those observations not

assigned to existing tracks are unassociated.

3. Fewer observations are available than tracks; therefore, some tracks will have

missed detections.

The outcome is evaluated by the track maintenance element.

3.5 Track Maintenance

In track maintenance, three functions evaluate the results of the assignment

process:

Track Initiation. For each unassociated observation, either panchromatic or hyper-

spectral, the tracker initiates new tracks called tentative or preliminary tracks

(until confirmed). Since hyperspectral line scanning is cued when a tracker

confirms a track, the tracker initiates all tracks on moving objects primarily us-

ing panchromatic video observations. For kinematic-only tracking simulations,
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REPEAT
BEGIN Bidding Phase

FOR each observation i that is unassigned in E
Compute the value of each track j ∈ ∆(i);
Find the “best” track j∗ with the maximum value;
Find the best value offered by tracks other than j∗;
Compute the “bid” of observation i for track j∗

END
END
BEGIN Assignment Phase

FOR each track j
IF P(j) is nonempty

Increase pj to the highest bid;
Find track i∗ with maximum pj;
Remove from E any pair (i, j);
Add to E the pair (i∗, j)

END
END

END
UNTIL assignment complete

Figure 3.14: In the Bertsekas auction algorithm, the cost pj corresponds to the kine-
matic distance d2

ij,kin (if the observation is panchromatic) or the overall distance dij (if
the observation is hyperspectral), where the distance represents the cost observation
i incurs for being assigned to track j.

the tracker initiates a track using the class ID of the nearest vehicle. This is

a design choice that provides a way to discriminate between tracks. For the

hyperspectral-augmented tracking simulations, the tracker initially assigns the

“unknown” class ID to each track. After the hyperspectral sensor scans the

track region, the tracker updates the class ID state variable with the class ID

of the hyperspectral observation that it assigns to the track.

Track Confirmation. The tracker confirms a track if it receives K associated ob-

servations within B frames.

Track Deletion. The tracker deletes a track if it does not receive associated obser-

vations after KD frames.
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Fig. 3.15 provides the pseudo-code for the confirmation and deletion logic. A special

function called track stitching stitches a newly confirmed track to the nearest dead

track within the confirmed track’s gate. Track maintenance performs this function

solely for the kinematic-only simulations in order for swapped tracks to maintain track

continuity after they are deleted (due to no updating information). Thus, the tracks

remain swapped after going through ambiguous situations. The design of experiments

in Sec. 4.1 provides additional information on this implementation.

3.6 Filtering and Prediction

The filtering and prediction element uses both panchromatic and hyperspectral

observations to update track kinematic states. The kinematic-only tracker employs

a constant velocity Kalman filter (previously discussed in Sec. 2.3.4). Similarly, the

hyperspectral-augmented tracker employs a constant velocity Kalman filter, for which

the state vector for track j, xj =
[

x y ẋ ẏ h
]T

, includes an additional state

variable h. The variable h represents the class ID of the track. During updates,

the modeled measurement noise covariance R accounts for uncertainty in position,

regardless of the type of observation. On the other hand, the class ID for each track,

which is updated by hyperspectral observations only, has zero uncertainty. The class

ID of the hyperspectral observation (in the observation-to-track assignment) replaces

the current class ID of the track. Admittedly, this is a naive assumption, especially in

the absence of an MHT [8]. Statistical methods can be used to address the uncertainty

of the class ID state variable, namely, Bayesian or a posteriori inference, maximum

a posteriori (MAP), likelihood processing, and maximum likelihood, and evidential

reasoning [8]. For simplicity, this research assumes perfect class ID and defers the use

of statistical methods to future work.

3.7 Nearest Neighbor Computations

The nearest neighbor computations element pre-computes the nearest neighbors

for each class in the spectral library. Gating computations in Sec. 3.8.2 uses the
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BEGIN at track initiation
Create Bvideo and BHSI bit variables (initialized to 5 and
3 bits, respectively) and kvideo and kHSI iteration counters
for each track (both initialized to zero);
REPEAT for every observation-to-track pair
(whenever not specified, replace “k,” “K,” and “B”
based on observation type; e.g., if observation is video,
use kvideo, Kvideo, and Bvideo, respectively)

WHILE k is not equal to multiple of K
Increment k by 1;
IF the associator assigns an observation to a track

Assign 1 to the appropriate B bit corresponding to
k (if k ≤ B) or remainder of (k/B) (if k > B);

END
IF sum of B bits ≥ K

Confirm track;
END
IF kvideo > Bvideo and kHSI > BHSI and (sum of
Kvideo bits < KD,video and sum of KHSI bits < KD,HSI

unless sum of Kvideo bits < KD,video occurs before
a hyperspectral sensor scans a track)

Delete track;
END

UNTIL track is deleted
END

Figure 3.15: The tracker confirms tracks based on either Kvideo = 3/Bvideo = 5
or KHSI = 2/BHSI = 3 observations. The tracker deletes tracks based on KD,video =
3/Kvideo = 5 and KD,HSI = 2/KHSI = 3, unless the video deletion criteria is met before
the hyperspectral sensor scans the track. These values were determined experimen-
tally by identifying the number of frames (or length of time) before the target is no
longer within the kinematic gate of the track or the scan region of the hyperspectral
sensor.

nearest neighbors to gate hyperspectral observations. Nearest neighbor computations

calculates the nearest neighbors differently for each classification algorithm used by

spectral matching and ID in Sec. 3.3:

Fuzzy C-Means. Nearest neighbor computations determines the nearest neighbors

for each class using the following procedure:
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1. Compute sample-wise spectral distances between class smc1 and each of the

other classes smc2 , where m = 1, . . . ,M, c1 = 1, . . . , C, c2 = 1, . . . , C, and

c1 6= c2. The spectral distance measures are the Euclidean, Manhattan,

correlation, Chebyshev, Canberra, and squared chord defined in Sec. 2.4.

2. Summarize the sample-wise distances for each computed distance (from

step 1) by taking their average (Eq. (2.42) of Sec. 2.5.2).

3. Sort the linkage for each distance measure in ascending order.

Self-Organizing Map. Nearest neighbor computations performs a similar, but more

intricate procedure to determine the nearest neighbors for each class:

1. Compute the sample-wise Euclidean distances (Eq. (2.35) of Sec. 2.4)

between a class smc1 and each of the other classes smc2 , where

m = 1, . . . ,M, c1 = 1, . . . , C, c2 = 1, . . . , C, and c1 6= c2. This pro-

cedure evaluates two sample distributions:

SOM lattice. Use the lattice location points (ηℓ ∈ R2) of the class sam-

ples.

Prototype vectors. Use the prototype vectors (mℓ ∈ RN) associated

with the SOM lattice points of the class samples.

2. Summarize the sample-wise distances using the average linkage (Eq. (2.42)

of Sec. 2.5.2).

3. Sort the linkage distances in ascending order.

At the completion of each procedure, the class labels of the sorted distances provide

the neighbors in ascending order of distance for the class under consideration.

3.8 Gating Computations

The gating computations element performs kinematic and spectral gating as

described in the following:
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3.8.1 Kinematic Gating. Gating computations obtains the gate threshold

for the Mahalanobis distance calculated in Sec. 3.4 from tables of the Chi-square

distribution, since the quadratic form in Eq. (2.31) that defines the gate region is Chi-

square distributed with number of degrees of freedom equal to measurement dimension

N . Table 3.3 gives the gate probability PG [3]

PG = P {z(t+ 1) ∈ V (t+ 1, G)} , (3.8)

or the “probability that the (true) measurement will fall in the gate” for various

values of G and measurement dimension N . The square root g =
√
G is the number

of standard deviations of the gate.

3.8.2 Spectral Gating. Since kinematic gating is not suitable for hyper-

spectral data, gating computations gates hyperspectral observations using a different

approach called spectral gating. Gating hyperspectral data is a novel concept, and it

appears that very little research has been done in this area. The main idea is that

a hyperspectal observation is outside the gate of a track if the observation’s class ID

is spectrally distinct from the track’s class ID. Spectral gating reduces the number

of operations performed by the observation-to-track association. It is not unlikely for

an HSI chip to have more than ten hyperspectral observations, and if three target

tracks exist, the number of operations amounts to around 1,000 (as compared to 27

operations for three observations and three tracks).

G 1 4 6.6 9 9.2 11.4 16 25
g 1 2 2.57 3 3.03 3.38 4 5

N
1 0.683 0.954 0.99 0.997 0.99994 1
2 0.393 0.865 0.989 0.99 0.9997 1
3 0.199 0.739 0.971 0.99 0.9989 0.99998

Table 3.3: The table provides values of the probability mass PG given the gate
threshold G and measurement dimension N . The desired probability PG is 0.99.
Since the measurement vector has two dimensions, the gate threshold G is 9.2.
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Spectral gating using a single hypothesis tracker, however, has potentially sig-

nificant drawbacks, especially for more complex ambiguous situations. For example,

if one vehicle goes into an occlusion (e.g., under a bridge) and a second vehicle goes

out of the occlusion (heading in the same direction as the first vehicle), the tracker

will likely “latch” onto the second vehicle. Assuming the second vehicle’s hyperspec-

tral signature is outside of the gate of the existing track, the associator ignores the

hyperspectral observation generated by the second vehicle. Hence, the hyperspectral-

augmented tracker does not update the class ID of the track. In a single hypothesis

tracker, one way to address this is by performing a track deletion based on the track’s

class ID. If the associator consistently associates an observation with another class

ID (e.g., 3 out of 5 frames), the tracker should delete the current track and initiate a

new track with this class ID. A more robust approach is to implement an MHT [8].

Gating computations performs spectral gating using the nearest neighbors de-

scribed in Sec. 3.7. It implements a different spectral gating computation for each

type of classification algorithm used by spectral matching and ID in Sec. 3.3:

Fuzzy C-Means. Gating computations takes the most frequent first, second, and

third nearest neighbor class for all six distance measures. These are the most

likely confusers; therefore, they are the classes considered within the gate of

the class under consideration. The choice of three is arbitrary. Thresholding

the average linkage can also be used to limit the number of nearest neighbors.

Fig. 3.16 is a plot of a (hypothetical) data set, where samples with the same

color belong to the same class. Using the Euclidean distance and average linkage,

represented by the red arrows, the three nearest neighbors of the yellow class

are the black, light blue, and dark blue classes.

Self-Organizing Map. Gating computations thresholds the sorted linkage dis-

tances. For each distance m, starting with the smallest distance, compute

Eq. 3.9 - 3.11 until Ψ > 0
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Figure 3.16: In this example, nearest neighbor computations computes the sample-
wise Euclidean distances between the yellow class and the other classes in the data
set. The average linkage, represented by the red arrows, summarizes the Euclidean
distances. The first, second, and third nearest neighbor are the black, light blue, and
dark blue classes.

ψ1 = d(c1, cm+1) − d(c1, cm), (3.9)

ψ2 = d(c1, cm+2) − d(c1, cm+1), (3.10)

Ψ = ψ2 − ψ1. (3.11)

The class labels of the first m linkage distances are the classes within the gate

for the class of the track under consideration. This algorithm determines the

“knee in the curve,” and each class with distance that is less than the distance

at the knee is considered a nearest neighbor (Fig. 3.17).
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Figure 3.17: The curve provides the neighbors of class ID 17, as described in Sec. 3.7.
The knee in the curve is calculated using Eqs. (3.9) - (3.10). Class ID 38, 7, 1, and
31 (in red) are the nearest neighbors of class ID 17 in ascending order of distance.

3.9 Performance Measures

Performance analysis uses seven measures to compare the performance of the

tracker (before and after augmenting the system with hyperspectral data) and to

assess the performance of the classifier [6]:

Probability of Detection (PD) and Probability of False Alarm (PFA).

These first two measures are based on Bayesian decision theory, where H0

is the hypothesis that an unclassified pixel is any background type, and

Hcv
, 1 ≤ cv ≤ 41, is the hypothesis that a pixel is target type cv:
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PD = P (Hi|Hi)i6=0

=
ND

ND +NMISS

, (3.12)

PFA = P (Hi|Hj)0<cv≤41,cv 6=j

=
NFA

NFA +NREJECT

. (3.13)

where ND is the number of correct detections, NMISS is the number of missed

detections, NFA is the number of false alarms, and NREJECT is the number of

rejections. The experimental design of Sec. 4.1 defines detection, false alarm,

miss, and rejection at the pixel level in the following manner:

1. A detection occurs when the classifier identifies the target pixel correctly.

2. A false alarm occurs when the classifier identifies a background pixel as

any target or the target of interest as a different target type.

3. A miss occurs when the classifier misidentifies a target as a background

class.

4. A rejection occurs when the classifier identifies background as any of the

background types.

For each pixel in the HSI chip, a counter increments one of these four parameters,

depending on the result of the comparison between the pixel’s class ID and pixel

truth.

Equal-Weighted Classification Accuracy (EWA). This third measure, which is

also at the pixel level, measures the percentage of correctly identified pixels and

computes the accuracy of each HSI chip as the average of the individual class

accuracy for the classes contained within the chip:20

20Sec. 2.6 describes EWA in more detail.
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EWA =

C
∑

c=1

(

#correct

total#

)

c

1c

C
∑

c=1

1c

, (3.14)

where 1c is an indicator function that evaluates to true if class c exists in the

current image chip. This measure obtains the #correct and total# from the

error matrix discussed in Sec. 2.6.

Measures of effectiveness. The remaining four metrics, which are at the frame

level, provide measures of effectiveness using track-to-truth assignments.21

1. For each truth trajectory associated with a track (without a class ID),22

the probability of association is

Passoc,j =
Nassoc,j

Nf

, (3.15)

where Nassoc,j is the number of track associations for track j at frame f

and Nf is the number of frames.

2. For each truth trajectory associated with a track (with any class ID),23 the

probability of declaration given association is

Pdeclare,j|assoc,j =
Ndeclare,j

Nassoc,j

, (3.16)

where Ndeclare,j is the number of track declarations for track j.

3. For each truth trajectory associated with a track (matching the true class

ID), the probability of correct ID given declaration is

21The associator performs the auction algorithm on track-to-truth pairings to determine the track-
to-truth assignment.

22A track without class ID (track association) is only based on kinematic observations. The
hyperspectral sensor has not scanned the track region; therefore, the track has not received any
hyperspectral observation updates.

23A track with any class ID (track declaration) has received updates from hyperspectral observa-
tions. The assigned class ID is not necessarily the true class ID of the target.
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PID|declare,j =
1

Ndeclare

Nf
∑

f=1

IDcorrect
j,f , (3.17)

IDcorrect
j,f is a correct target identification for track j at frame f .

4. The last measure is the performance check for the hyperspectral-augmented

tracking system. It is based on the probability of a correct target identifi-

cation,

PID,j =
1

Nf

Nf
∑

f=1

IDcorrect
j,f . (3.18)

Correct target identification occurs whenever a current identification is

the same as truth for a particular target’s position independent of the

track number. In other words, if the kinematic tracker swaps tracks, but

still correctly identifies the target, even though it is now assigned to the

“wrong” track number, it is still deemed correct.

3.10 Summary

This chapter provides the different algorithms, procedures, and rules employed

by the hyperspectral-augmented tracker. The next chapter describes the implemen-

tation of the methodology through experiments. By using different parameters for

the weighting factor γ, implementing two different classification algorithms, simulat-

ing a change detection algorithm, gating hyperspectral observations, and evaluating

different ambiguous situations, the results offers meaningful insights on what effects

these factors have (if any), and more importantly, provides patterns that show pre-

dictable cause-and-effect relationships between the system parameters and the results

themselves.
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IV. Design of Experiments and Simulation Results

This chapter discusses the design of experiments (Sec. 4.1), analyzes the var-

ious simulations (Secs. 4.2 and 4.3), and summarizes their respective results

(Sec. 4.4). Sec. 4.2 describes a single kinematic-only tracking baseline simulation run

through a sequence of images taken over time. It highlights the ambiguous situations

and the different configurations employed by the system. For comparison, Sec. 4.3

provides the same sequence of images, but this time, augmented with hyperspectral

data. Furthermore, it discusses the various configurations used by both classification

approaches (fuzzy c-means and two-stage self-organizing map). Finally, since the main

objective of this research is to compare the performance of kinematic-only tracking

with hyperspectral-augmented tracking, Sec. 4.4 summarizes the quantitative results

for both tracking methods using the performance measures described in Sec. 3.9.

4.1 Design of Experiments

The design of experiments is a strategy for setting up several sets of experiments

to determine ultimately the feasibility of the overall system. In order to provide a

complete analysis, several key system parameters are varied in a systematic man-

ner for the purpose of determining the correlation between parameters and results.

Sec. 4.1.1 discusses briefly the software package used in the implementation of the

experimental design. Sec. 4.1.2 summarizes the different effects that are accounted

for in the simulated measurement noise. Sec. 4.1.3 examines the two ambiguous sce-

narios used in the experiments, followed by the description of the various parameter

configurations (Sec. 4.1.4). Finally, Sec. 4.1.5 discusses the simulation process and

describes the visualization display that provides the state of the system at a point in

time.

4.1.1 Matlab. This research implements the kinematic-only and

hyperspectral-augmented tracking systems using the Matlab
r software package.

Matlab
r is a high-performance language for technical computing [25] that integrates

computation, visualization, and programming in an easy-to-use environment where
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problems and solutions are expressed in familiar mathematical notation. It features

a family of add-on application-specific solutions called toolboxes. Toolboxes are com-

prehensive collections of MATLAB functions (M-files) that extend the Matlabr envi-

ronment to solve particular classes of problems. Areas in which toolboxes are available

include signal processing, control systems, neural networks, fuzzy logic, wavelets, sim-

ulation, and many others [25]. For these reasons, Matlabr is an excellent choice for

developing the simulations for this research.1

4.1.2 Simulated Measurement Noise. Although the simulations use syn-

thetic data, the hyperspectral data that produced the imagery originate from real

vehicle and background measurements. The tracking system also emulates the real

environment using a simulated change detector and a simulated measurement gen-

erator, allowing for missed detections due to minimum detectable velocity and mea-

surement dropouts due to occlusions. Furthermore, measurement noise is added to

account for external influences that affect the generation of video detections (e.g.,

atmospheric effect, sensor noise, and jitter). Although these provide a certain level

of realism, other effects are ignored such as false alarms due to clutter or background

noise, parallax, and image registration errors.

4.1.3 Scenarios. The simulations evaluate two scenarios using two vehicles,2

as shown in Fig. 4.1. Both scenarios, which are 20 seconds long, provide one or more

vehicle maneuvers that generally cause the failure of a kinematic-only tracker. The

following describes these two scenarios:

Scenario 1. Both vehicles depart from the west (Fig. 4.1(a)(A)), heading in an east-

erly direction. They travel side by side with the same speed. As the vehicles

come to a complete stop at the intersection (Fig. 4.1(a)(B)), the tracker “loses”

1Although the processing speed of Matlab
r can be a significant drawback (compared to other

languages such as C++), it is not a major consideration for this research effort. The easy-to-use
environment and the availability of toolboxes outweigh the need for fast processing time.

2This research limits the number of targets to two vehicles to minimize computational complexity.
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(a) Scenario 1.
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(b) Scenario 2.

Figure 4.1: Both plots show two truth tracks (one light blue and one red) represent-
ing the trajectories of two vehicles. In scenario 1, both vehicles depart from the west
(Fig. 4.1(a)(A)) and perform a move-stop-move at the intersection (Fig. 4.1(a)(B)).
The top vehicle speeds up and overtakes the bottom vehicle (Fig. 4.1(a)(C)). In sce-
nario 2, one vehicle departs from the west (Fig. 4.1(b)(A)), while the other departs
from the east (Fig. 4.1(b)(B)). At the intersection (Fig. 4.1(b)(C)), both vehicles stop,
and the vehicle from the east continues heading west, while the other vehicle turns
and heads north.
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track of both vehicles. Since the tracker simulates a change detection algo-

rithm, the measurement generator stops providing kinematic observations once

the speed of the vehicles goes below the minimum detectable velocity (MDV)

of 1.5m/s. After several seconds, the vehicles depart heading in the same di-

rection, but this time, the top vehicle speeds up and passes the bottom vehicle

(Fig. 4.1(a)(C)). This scenario has two ambiguous situations: (1) The spacing of

both vehicles causes track swaps to occur. (2) At the intersection, both vehicles

perform a move-stop-move, leading to track losses.

Scenario 2. One vehicle departs from the west (Fig. 4.1(b)(A)). The other vehicle

departs from the east (Fig. 4.1(b)(B)). Both vehicles head toward each other

at the same speed. At the intersection (Fig. 4.1(b)(C)), both vehicles come to

a complete stop. Similar to scenario 1, the tracker loses track of both vehicles.

After a few seconds, the vehicle coming from the east continues heading west,

while the other vehicle turns left and heads north. The ambiguous situation in

this scenario occurs at the intersection, where both vehicles perform a move-

stop-move.

4.1.4 Configurations. Each configuration consists of user-defined parame-

ters. The following list the different parameters and settings used in the simulations.

1. Truth trajectory – {[17,31],[17,32]}

2. Weight γ (Sec. 3.4) – {0.99,0.5,0.01}

3. Hyperspectral line scanner (Sec. 3.1.2) – {Pushbroom, ROI}

4. Class model (Sec. 3.7) – {SOM lattice points, SOM weight/prototype vectors,

FCM vectors}

5. Linkage (Sec. 3.7) – {Average}

6. Map type (Sec. 3.3.2) – {Original, Filtered}

7. Scenario (Sec. 4.1.3) – {1, 2}
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The truth trajectories consist of two combinations—two vehicles with class ID 17

(red1) and class ID 31 (red2) and two vehicles with class ID 17 (red1) and class ID

32 (green). From Table 3.1, class ID 17 (red1), class ID 31 (red2), and class ID 32

(green) are red Saturn, red Pontiac, and green Chevy, respectively. The first combina-

tion corresponds to two similarly colored vehicles, whereas the second corresponds to

two distinctly colored vehicles. Similarly colored truth trajectories allow for “ambigu-

ous” hyperspectral features, since similarly colored vehicles potentially have similar

hyperspectral signatures. However, Fig. 4.2 shows that, although class ID 17 (red1)

and class ID 31 (red2) are described as red vehicles, both have different hyperspectral

signatures. This is the power of hyperspectral data. One can easily discriminate be-

tween two similarly colored vehicles through their detailed spectral signatures. This

can be attributed to different shades of color, the material composition of the vehicles’

exterior, and other materials on the vehicles’ surface such as dirt.

Since the main objective of the simulations is to compare the performance of

the kinematic-only versus the hyperspectral-augmented tracker, the first set of con-

figurations performs a baseline simulation using the kinematic-only tracker. The

hyperspectral-augmented tracker performs similar simulations using different config-

urations of the parameters listed above.

4.1.4.1 Kinematic-Only Tracking. The kinematic-only tracking base-

line simulation consists of four configurations (Table 4.1), which correspond to unique

combinations of truth trajectories and scenarios. The kinematic-only tracker initiates

each track using the class ID of the nearest vehicle (even if a track is already assigned

to the vehicle). This is a design choice that provides a means to discriminate between

two tracks in the scenario.3 The tracker does not update this ID for the life of a

track. Because the tracker initiates tracks this way, the kinematic-only simulations

have an advantage over the hyperspectral-augmented tracking simulations. Further-

3An unintended consequence of this design is that both tracks can be initialized using the class
ID of the same vehicle.
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(a) Reflectance plot of class 17 (red1) and 31 (red2).
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(b) Reflectance plot of class 17 (red1) and 32 (green).

Figure 4.2: The reflectance plots for class 17 (red1) and 31 (red2) of two similarly
colored vehicles (a). It turns out that the hyperspectral signatures for both red
vehicles are different. As expected, the reflectance plots for class 17 (red1) and 32
(green) are distinct (b).
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Configuration Truth Trajectories Scanner Scenario

1 [17,31] off 1
2 [17,31] off 2
3 [17,32] off 1
4 [17,32] off 2

Table 4.1: The kinematic-only tracking baseline simulation (without hyperspectral
augmentation) consists of four combinations of the truth trajectories and scenarios.

more, when a vehicle stops in a move-stop-move maneuver or is occluded from view

(e.g., tree occlusions), the tracking logic subsequently deletes the track assigned to

the vehicle (due to no updating information). If a track swap occurs prior to track

deletion, i.e., the class ID of the track and the class ID of the vehicle to which the

track is assigned do not match, the track is likely to be un-swapped upon track ini-

tiation. Thus, the class ID of the track and the class ID of the vehicle match once

again after the vehicles start moving.

For example, in scenario 2, the tracks are always correctly identified until they

reach the intersection. At the intersection, the tracker always swaps each track to the

other vehicle because of the vehicles’ close proximity. Assume that one of the tracks

is assigned with class ID 17 (red1) and the other with class ID 32 (green). The class

ID 17 (red1) track is tracking the class ID 17 (red1) vehicle. A track swap occurs

when the tracker assigns or swaps the track to the class ID 32 (green) vehicle, i.e., the

observations for the class ID 32 (green) vehicle is now associated with the class ID

17 (red1) track. A similar swap event also occurs for class ID 32 (green) track. After

failing to receive update information, the tracker eventually deletes both tracks. As

the vehicles begin to speed up (MDV > 1.5m/s), the tracker once again initiates each

track using the class ID of the nearest vehicle, effectively swapping the tracks back;

therefore, the class ID 17 (red1) track, which was assigned to the class ID 32 (green)

vehicle prior to track deletion, is now assigned back to class ID 17 (red1) vehicle.

Alternative tracking logic or different Kalman filter tuning parameters can ad-

dress the track deletions that occur in the move-stop-move maneuver or measurement

dropouts due to tree occlusions. For the move-stop-move maneuver, if the alterna-
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tive tracking logic allows tracks to persist while the vehicles are at rest rather than

delete tracks (due to no updating information), the tracks can either remain correctly

identified (class ID of track and vehicle match) or misidentified (if the class ID of

track and vehicle do not match due to close proximity). One way to address the

track deletion, which causes track discontinuity, with the current tracking logic is

through track stitching, in which a new track is “connected” to the nearest deleted

track. Doing so, the tracker updates the track’s class ID (based initially on the nearest

vehicle) with the class ID of the nearest deleted track. Due to measurement noise,

however, track continuity is not always maintained since a track is not always stitched

to the correct deleted track. This actually works well because if the track persisted

in the move-stop-move maneuver, it allows for the possibility that the kinematic-only

tracker swaps each track back to the correct vehicle. The kinematic-only simulation

of Sec. 4.2 illustrates this process.

4.1.4.2 Hyperspectral-Augmented Tracking. The hyperspectral-

augmented tracking simulation consists of the FCM and two-stage SOM classification

approaches. The results of the two classification approaches, which should perform

well with mixed spectra, are compared in Sec. 4.4.

4.1.4.2.1 Fuzzy C-Means. The hyperspectral-augmented

tracker integrates the FCM classification algorithm (described in Sec. 3.3.1) into the

tracking process. Since the SOM evaluates the other values for γ, the FCM simulation

uses γ = 0.5 only for all combinations of truth trajectories and scenarios, for a total of

four configurations. The four FCM configurations are summarized in Table 4.2. Note

that the simulations only implement the ROI hyperspectral line scanning. In [6], the

results of the FCM simulations show that the hyperspectral sensor mode is not a criti-

cal performance driver. Therefore, the pushbroom implementation is not investigated

for the FCM.

4-8



Configuration Truth Trajectories Scanner Weight γ Scenario

1 [17,31] ROI 0.5 1
2 [17,31] ROI 0.5 2
3 [17,32] ROI 0.5 1
4 [17,32] ROI 0.5 2

Table 4.2: The FCM simulation only uses γ = 0.5, ROI, and the four combinations
of truth trajectories and scenarios.

4.1.4.2.2 Self-Organizing Map. The hyperspectral-augmented

tracker integrates the SOM classification algorithm (described in Sec. 3.3.2) using

various parameter combinations. The following list summarizes the parameter com-

binations into six configuration sets, which are outlined in Table 4.3:

A. Configurations 1-8 – {{[17,31],[17,32]}, 0.5, ROI, SOM lattice points, {Original,

Filtered}, {1, 2}}

B. Configurations 8-16 – {{[17,31],[17,32]}, 0.5, Pushbroom, SOM lattice points,

{Original, Filtered}, {1, 2}}

C. Configurations 17-24 – {{[17,31],[17,32]}, 0.5, ROI, SOM Weight vectors,

{Original, Filtered}, {1, 2}}

D. Configurations 25-32 – {{[17,31],[17,32]}, 0.5, Pushbroom, SOM Weight vectors,

{Original, Filtered}, {1, 2}}

E. Configurations 33-40 – {{[17,31]}, {0.9,0.01}, ROI, SOM lattice points, {Original,

Filtered}, {1, 2}}

F. Configurations 41-48 – {{[17,32]}, {0.9,0.01}, ROI, SOM lattice points, {Original,

Filtered}, {1, 2}}

Each configuration set consists of eight configurations because there are eight

unique combinations for the two truth trajectories, two SOM maps, and two scenarios

common to all configuration sets. For configuration sets A and B, the difference

is in the sensor mode. By comparing the two configuration sets, the difference in

performance is shown between pushbroom and ROI while using the SOM lattice
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points. For configuration sets C and D, the sensor modes are also compared, but this

time, using the SOM prototype vectors. Configuration sets A and C evaluate the

performance between the SOM lattice points and weight vectors. For configuration

set E, the other weighting factors (0.9 and 0.01) are implemented for the first truth

trajectory, and for configuration set F, the other weighting factors are implemented

for the second truth trajectory. Both configuration sets E and F use the scanner and

class model settings used in configuration set A.

Table 4.3: The hyperspectral-augmented tracker performs a SOM classification ap-

proach using various settings (Sec. 4.1.4) for the truth trajectories, weight γ, scanner

type, class model, original versus filtered map, and scenario parameters.

Index Truth Weight Scanner Class model Map Scenario

1

[17,31]

0.5 ROI SOM Lattice

Original
1

2 2

3
Filtered

1

4 2

5

[17,32]

Original
1

6 2

7
Filtered

1

8 2

9

[17,31]

0.5 Pushbroom SOM Lattice

Original
1

10 2

11
Filtered

1

12 2

13

[17,32]

Original
1

14 2

15
Filtered

1

16 2

Continued on next page
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Table 4.3 – continued from previous page

Index Truth Weight Scanner Class model Map Scenario

17

[17,31]

0.5 ROI Weight Vectors

Original
1

18 2

19
Filtered

1

20 2

21

[17,32]

Original
1

22 2

23
Filtered

1

24 2

25

[17,31]

0.5 Pushbroom Weight Vectors

Original
1

26 2

27
Filtered

1

28 2

29

[17,32]

Original
1

30 2

31
Filtered

1

32 2

33

[17,31]

0.99

ROI SOM Lattice

Original
1

34 2

35
Filtered

1

36 2

37

0.01

Original
1

38 2

39
Filtered

1

40 2

Continued on next page
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Table 4.3 – continued from previous page

Index Truth Weight Scanner Class model Map Scenario

41

[17,32]

0.99

ROI SOM Lattice

Original
1

42 2

43
Filtered

1

44 2

45

0.01

Original
1

46 2

47
Filtered

1

48 2

4.1.5 Simulations. A Monte Carlo (MC) evaluation, which is the approach

used to evaluate the system, consists of 100 simulation runs per configuration. En-

semble statistics for the performance measures of Sec. 3.9 are calculated for each MC

evaluation. Results are generated and compiled for each run.

One useful and informative feature of the simulation is the visualization of the

simulated panchromatic video images. Fig. 4.3 is an example of the state of the

system at a particular time step for a SOM-based simulation run. The left plot

indicates the true target trajectories, track states with confidence bounds, and the

current hyperspectral scan line (horizontal line located at line 61). The center top

plot is a spectral representation of the finalized hyperspectral image (HSI) chip. The

center left plot shows the pixel classification of the HSI chip in red, green, blue format

(RGB), and for comparison, the center right plot shows the true class label of each

pixel. The fused chip exemplifies the non-rectangular nature allowed by the system; in

fact, chips occasionally contain holes (black regions in the upper left, upper right, and

lower right regions). This instance contains several misclassified pixels. For example,

several pixels in the red vehicle’s pixel region are either unknown or classified as either

target or background. The classifier also identified several background pixels as green

vehicle. The center bottom plot indicates the morphological operations performed by
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the associator, where the cyan ‘∗’ represents the centroid of each hyperspectral region

and the green ‘∗’ represents the track predicted position states. A line is drawn for

each observation-to-track association. The PID above the right plot shows that the

associator assigned both vehicles incorrectly. The track with class ID 32 (green) is

associated with the vehicle with class ID 17 (red1). Similarly, the track with class

ID 17 (red1) is associated with the vehicle with class ID 32 (green). Because of the

misassociation, each track is bounded by a red circle. If a track is correctly identified,

it is bounded by a green circle.
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Figure 4.3: The simulation display is a visualization of the state of the system at a particular time. The parameters are
{[17,32], 0.5, ROI, SOM lattice points, Average, Original, 2}. The values above the right plot provide the PID performance
measure. Since the tracker swapped both tracks, the PID for each track is low.
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4.2 Kinematic-Only Tracking

The kinematic-only baseline simulation uses the configurations summarized in

Table 4.1. Each simulation performs an MC evaluation, in which the truth trajec-

tories are resampled at 10Hz with additive Gaussian distributed noise (mean = 0m,

standard deviation = 2m). As discussed in Sec. 2.6, the associator performs a

truth-to-track assignment for the computation of track statistics. Percentage of cor-

rect identification (PID) is the primary performance measure. By comparing the

PID between kinematic-only and hyperspectral-augmented tracking, the feasibility

of the hyperspectral-augmented tracking can be verified. It is worth noting that

the kinematic-only simulations actually have an advantage over the hyperspectral-

augmented simulations because the tracker initiates a track using the class ID of

the nearest vehicle (see Sec. 4.1.4.1). Hence, the track’s PID starts increasing after

track confirmation (assuming subsequent assigned observations belong to the nearest

vehicle). For every frame that a correct match occurs between the class ID of the

track and the class ID of the nearest vehicle, a green circle bounds the track and the

PID of the track increases. Otherwise, a red circle bounds the track and the PID of

the track decreases. Figs. 4.4 and 4.5 illustrate a single tracking simulation run for

configuration 1 at various time steps.

4.2.1 Configuration 1. A single MC run for configuration 1 is described in

this section. It consists of a class ID 17 (red1) and a class ID 32 (green) vehicle. Both

vehicles start out heading east. The tracker initiates each track using the class ID of

the nearest vehicle (Fig. 4.4(a)). Sometime between t = 0.8s and t = 1.0s, the class

ID 17 (red1) track experiences measurement dropouts due to tree occlusions, causing

the tracker to delete it4 (Fig. 4.4(b)). Between t = 1.0s and t = 1.2s, the tracker

receives kinematic measurements intermittently from both vehicles, keeping the class

ID 32 (green) track alive (Fig. 4.4(c)). At one point, however, the class ID 32 (green)

4Note that measurement dropouts do not necessarily result in track deletion. They can be
addressed using alternative tracking logic similar to the move-stop-move maneuver described in
Sec. 4.1.4.1. Tracks can be allowed to persist unless contrary evidence comes in from an observation.
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vehicle becomes completely occluded, and the tracker consistently updates the class

ID 32 (green) track using the kinematic measurements of class ID 17 (red1) vehicle.

This event is called a track swap. Since their respective class IDs do not match, the

track is bounded by a red circle and its PID decreases. Sometime between t = 1.2s

and t = 2s, the tracker initiates a track using the kinematic measurements of class ID

32 (green) vehicle, but because the nearest vehicle is the class ID 17 (red1) vehicle, the

tracker assigns the track with class ID 17 (red1). After track confirmation, the tracker

stitches the track to the nearest deleted track;5 hence, it updates the class ID with

the previous deleted class ID 17 (red1) track (the class IDs happen to be the same).

The tracker updates the class ID 17 (red1) track using the kinematic measurements

of class ID 32 (green) vehicle (Fig. 4.4(d)).

In Fig. 4.5(a), both tracks remain swapped until they reach the intersec-

tion where they come to a complete stop. Both tracks meet the deletion criteria

and are deleted by the tracker (Fig. 4.5(b)). After both vehicles speed up to an

MDV > 1.5m/s, the tracker initiates each track using the class ID of the nearest

vehicle, “re-assigning” each previously deleted swapped track back to the correct ve-

hicle. After track confirmation, the tracker stitches each track to the nearest deleted

track. The confirmed class ID 32 (green) track is stitched to the deleted class ID 17

(red1) track, which was previously assigned to the class ID 32 (green) vehicle prior

to track deletion (Fig. 4.5(c)). Doing so, the tracker updates the class ID of the con-

firmed track with the class ID of the deleted track; thus, swapping it from class ID 32

(green) to class ID 17 (red1). This is the desired effect, since a swapped track needed

to remain swapped after track deletion.6 The confirmed class ID 17 (red1) track also

undergoes the same process. Both tracks remain swapped throughout the rest of the

simulation (Fig. 4.5(d)).

5Note that alternative tracking logic can address the tracking difficulties in the move-stop-move
maneuver, as described in Sec. 4.1.4.1. For the current tracking logic, in order for swapped tracks
to remain in the swapped state after track deletion, track stitching is performed.

6Due to measurement noise, however, track continuity is not always maintained since not all new
tracks are stitched to the correct deleted track.
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  Car 17: 0.5  Car 32: 0.5

(a) Time t = 0.8s.

  Car 17: 0.59  Car 32: 0.6

(b) Time t = 1.0s.

  Car 17: 0.49167  Car 32: 0.61667

(c) Time t = 1.2s.

  Car 17: 0.295  Car 32: 0.42

(d) Time t = 2s.

Figure 4.4: Kinematic-only tracking for configuration 1 (Part A). This
configuration consists of a class ID 17 (red1) and a class ID 32 (green) vehicle. Both
vehicles start out heading east. The tracker initiates each track using the class ID
state of the nearest vehicle (a). Because of tree occlusions, the tracker deletes the
class ID 17 (red1) track (b) and swaps the class ID 32 (green) track to the class ID 17
(red1) vehicle (c). After the vehicles pass the trees, the tracker initiates a track and
assigns it the class ID 17 (red1), which is the nearest vehicle. The tracker updates
the class ID 17 (red1) track using the kinematic measurements of class ID 32 (green)
vehicle.
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  Car 17: 0.098333  Car 32: 0.14

(a) Time t = 6s.

  Car 17: 0.07375  Car 32: 0.105

(b) Time t = 8s.

  Car 17: 0.068  Car 32: 0.084

(c) Time t = 10s.

  Car 17: 0.048571  Car 32: 0.06

(d) Time t = 14s.

Figure 4.5: Kinematic-only tracking for configuration 1 (Part B). The tracks
remain swapped until they reach the intersection where both vehicles stop (a). The
tracker fails to receive update information and deletes both tracks (b). After both
vehicles start moving again, the tracker initiates a track for each and stitches each
confirmed track to the nearest deleted track (c). They remain swapped throughout
the rest of the simulation (d).
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4.2.2 Configuration 2. Fig. 4.6 illustrates a single tracking simulation run for

configuration 2 at various time steps. Prior to reaching the intersection, the tracker

correctly identifies both tracks for ≈ 93.5% of the frames (Figs.4.6 (a) and (b)).

Because of the close proximity at the intersection, each track swaps to the other

vehicle and becomes bounded by a red circle (Fig. 4.6(c)). As the vehicles come

to a complete stop, the tracks continue to propagate and are eventually deleted by

the tracker (no updating kinematic observations available) (Fig. 4.6(d)). When the

vehicles begin moving (MDV > 1.5m/s), the tracker detects the motion and initiates

tracks for both vehicles. After track confirmation, the tracker stitches each track to

the nearest deleted track.7 For this Monte Carlo run, the class ID 17 (red1) track is

stitched to the deleted class ID 32 (green) track, and the class ID 32 (green) track

is stitched to the deleted class ID 17 (red1) track8 (Fig. 4.6(e)). The tracks remain

swapped throughout the rest of the simulation (Fig. 4.6(f)).

7Note that alternative tracking logic or different Kalman filter tuning parameters can address the
tracking difficulties in the move-stop-move maneuver, as described in Sec. 4.1.4.1. For the current
tracking logic, in order for swapped tracks to remain in the swapped state after track deletion, track
stitching is performed.

8Due to measurement noise, however, track continuity is not always maintained since not all new
tracks are stitched to the correct deleted track.

4-19



  Car 17: 0.025  Car 32: 0.025

(a) Time t = 0.4s.

  Car 17: 0.935  Car 32: 0.935

(b) Time t = 6s.

  Car 17: 0.875  Car 32: 0.875

(c) Time t = 8s.

  Car 17: 0.7  Car 32: 0.7

(d) Time t = 10s.

  Car 17: 0.58333  Car 32: 0.58333

(e) Time t = 12s.

  Car 17: 0.4375  Car 32: 0.4375

(f) Time t = 16s.

Figure 4.6: Kinematic-only tracking for configuration 2. By t = 0.4s, the tracker correctly identifies both tracks (a)
until the intersection where they go through an ambiguous situation (b). The tracker swaps both tracks, which continue to
propagate after the vehicles stop (c). The tracker eventually deletes the tracks after being starved of kinematic observations
(d). When the vehicles start moving again (MDV > 1.5m/s), the tracker initiates tracks for both vehicles. After track
confirmation, the class ID 17 (red1) track is stitched to the deleted class ID 32 (green) track, and the class ID 32 (green)
track is stitched to the deleted class ID 17 (red1) track (e). The tracks remain swapped throughout the rest of the simulation
(f).
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4.3 Hyperspectral-Augmented Tracking

As the name implies, hyperspectral-augmented tracking augments the

kinematic-only tracking with hyperspectral data. Each track starts out with no fea-

ture information until after the hyperspectral sensor scans the track region. The

hyperspectral line scanning is prompted when the tracker confirms the track. The

hyperspectral-augmented tracker updates the class ID of the confirmed track with

the class ID of the first hyperspectral observation assigned to the track. This imple-

mentation relies heavily on the performance of the classifier; i.e., the first assigned

hyperspectral observation must have the hyperspectral signature of the vehicle (or at a

minimum, one of its nearest neighbors) with kinematic measurements that previously

updated the kinematic states of the track under consideration. Once the class ID is

updated, the only way it can change is through assigned hyperspectral observations

with class ID that is within the track’s spectral gate. This is especially critical when

the vehicles are closely spaced during initial hyperspectral scanning. The simulation

run for scenario 2 illustrates this point. For comparison, images are taken at the same

time steps as their equivalent kinematic-only simulation run.

4.3.1 Fuzzy C-Means Configuration 1. Fig. 4.7 and 4.8 illustrate an FCM

simulation run for configuration 1 of Sec. 4.2. The FCM simulation uses the cor-

responding FCM configuration from Table 4.2.9 In Fig. 4.7, the tracker assigns an

unknown class ID to both tracks during track initiation (based on panchromatic video)

(Fig. 4.7(a)). Note that when the tracker confirms a track, it cues the hyperspectral

sensor to scan the track region. Sometime between t = 0.8s and t = 1.0s, measure-

ment dropouts due to tree occlusions cause the tracker to delete the (unknown) track

assigned to the class ID 17 (red1) vehicle10 (Fig. 4.7(b)). By t = 1.0s, the hyper-

spectral sensor has scanned the (unknown) track region for the class ID 32 (green)

9Kinematic-only configuration 1 corresponds to FCM configuration 1, kinematic-only configura-
tion 2 corresponds to FCM configuration 2, and so on.

10The deletion logic for panchromatic video is met prior to the hyperspectral scanning of the track
region (see Sec. 3.5). Note that measurement dropouts do not necessarily result in track deletion.
They can be addressed using alternative tracking logic similar to the move-stop-move maneuver
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vehicle. Since both vehicles are closely spaced, the sensor scans part of the class ID

17 (red1) vehicle while the class ID 32 (green) vehicle is completely hidden from view.

The classification of the first assigned hyperspectral observation happens to be class

ID 17 (red1). The tracker, therefore, updates the class ID of the (unknown) track

from the unknown ID to class ID 17 (red1). Furthermore, because the class ID 32

(green) vehicle remains occluded, the tracker updates the kinematic states of class

ID 17 (red1) track with the kinematic and hyperspectral observations of class ID 17

(red1) vehicle (Fig. 4.7(c)). One might conclude that the tracker performs a track

swap. From the perspective of track purity, this is true. However, for this research, so

long as the tracker correctly identifies the vehicle (PID ↑), even if it swaps the track

(track purity ↓), the tracking goal is achieved effectively.

The tracker initiates an (unknown) track for the class ID 32 (green) vehicle

after it becomes unoccluded. At t = 2s, the tracker confirms the (unknown) track,

but the hyperspectral sensor has not scanned the track region. At the same time,

the class ID 17 (red1) track is closer to the class ID 32 (green) vehicle; thus, the

truth-to-track association assigns it to the class ID 32 (green) vehicle. Hence, both

tracks are bounded by a red circle (Fig.4.7(d)). After t = 2s, the sensor scans the

(unknown) track region, and the tracker updates it with class ID 32 (green). Once

both tracks maintain a steady trajectory, the tracker correctly identifies both tracks

consistently, as shown in Fig. 4.8(a). At t = 8s, both vehicles come to a complete

stop, causing the tracker to delete both tracks11 (Fig. 4.8(b)). By t = 10s, the

tracker has initiated tracks for both vehicles, the hyperspectral sensor has scanned

both track regions, and the tracker has assigned the correct class ID to each track

(Fig. 4.8(c)). Finally, the tracker correctly identifies both tracks throughout the rest

of the simulation (Fig. 4.8(d)). Recall that the kinematic-only tracker left the tracks

swapped for the duration of the simulation.

described in Sec. 4.1.4.1. Tracks can be allowed to persist unless contrary evidence comes in from
an observation.

11Note that alternative tracking logic can address the tracking difficulties in the move-stop-move
maneuver, as described in Sec. 4.1.4.1.
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  Car 17: 0  Car 32: 0
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(a) Time t = 0.8s.

Car 17: 0  Car 32: 0

100 200 300 400 500 600

Car 17: 0  Car 32: 0

100 200 300 400 500 600(b) Time t = 1.0s.

  Car 17: 0.13333  Car 32: 0

100 200 300 400 500 600

(c) Time t = 1.2s.

  Car 17: 0.265  Car 32: 0

100 200 300 400 500 600

(d) Time t = 2s.

Figure 4.7: Hyperspectral-augmented tracking version of Fig. 4.4 for fuzzy
c-means (Part A). During track initiation, the tracker assigns an unknown class ID
to both tracks (a). Measurement dropouts due to tree occlusions cause the deletion
of the track assigned to the class ID 17 (red1) vehicle (b). The hyperspectral sensor
scans the remaining (unknown) track region and updates it with class ID 17 (red1).
Because the class ID 32 (green) vehicle is hidden from view, the tracker updates the
kinematic states of the class ID 32 (green) using the observations of class ID 17 (red1)
vehicle (c). At t = 2s, the truth-to-track association assigns the class ID 17 (red1)
track to the class ID 32 (green) vehicle. At the same time, the tracker initiates an
(unknown) track for the class ID 32 (green) vehicle (d).
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  Car 17: 0.69  Car 32: 0.60167

100 200 300 400 500 600

(a) Time t = 6s.

  Car 17: 0.5675  Car 32: 0.53125

100 200 300 400 500 600

(b) Time t = 8s.

  Car 17: 0.485  Car 32: 0.472

100 200 300 400 500 600

(c) Time t = 10s.

  Car 17: 0.63214  Car 32: 0.62286

100 200 300 400 500 600

(d) Time t = 14s.

Figure 4.8: Hyperspectral-augmented tracking version of Fig. 4.4 for fuzzy
c-means (Part B). By t = 6s, the tracker updates each track using the observations
with matching class ID (a). As the vehicles slows to a stop at the intersection,
the tracks are starved of observations, causing the tracker to delete them (b). By
t = 10s, the tracker has initiated tracks for both vehicles, the hyperspectral sensor has
scanned the track regions, and the tracker associates the hyperspectral observations
with matching class ID to each track (c). The tracker correctly identifies both tracks
throughout the rest of the simulation (d).
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4.3.2 Self-Organizing Map Configuration 1. Figs. 4.4 and 4.5 illustrate a

SOM simulation run for configuration 1 of Sec. 4.2 using SOM configuration 7 from

Table 4.3. The parameters are [17,32], γ = 0.5, ROI line scanner, SOM lattice

points, filtered map, and scenario 1. The tracker initiates tracks for both vehicles

and assigns the unknown class ID to both tracks (Fig. 4.9(a)). When the vehicles

are partly occluded by the trees, the tracker deletes the (unknown) track for the

class ID 17 (red1) vehicle due to measurement dropouts.12 The hyperspectral sensor

scans the (unknown) track region for the class ID 32 (green) vehicle; however, the

tracker fails to assign a class ID to the track (no hyperspectral observation with any

vehicle class ID exists in the HSI chip). During this time, the class ID 32 (green)

vehicle becomes completely hidden from view. The tracker updates the (unknown)

track intermittently using the kinematic measurements of class ID 17 (red1) vehicle

(Fig. 4.9(b) and (c)). After t = 1.2s, the hyperspectral sensor scans the (unknown)

track region again, and the tracker updates the (unknown) track with class ID 17

(red1). Within the same time period, the green vehicle becomes unoccluded. The

tracker initiates an (unknown) track for the class ID 32 (green) vehicle. After the

hyperspectral sensor scans the (unknown) track, the tracker assigns it with class ID

32 (green). (Fig. 4.9(d) and Fig. 4.10(a)).

At the intersection, both vehicles come to a complete stop, but the tracks con-

tinue to propagate.13 In Fig. 4.10(b), the class ID 17 (red1) track is still alive, and since

the class ID 17 (red1) vehicle is outside the kinematic gate of class ID 17 (red1) track,

the track is bounded by a red circle and its PID decreases. The class ID 17 (red1) red

vehicle speeds up to overtake the class ID 32 (green) vehicle. The tracker detects its

motion and performs track initiation, which cues the hyperspectral sensor to scan the

track region. Based solely on the hyperspectral line scanner, the tracker initiates and

12Note that measurement dropouts do not necessarily result in track deletion. They can be
addressed using alternative tracking logic similar to the move-stop-move maneuver described in
Sec. 4.1.4.1. Tracks can be allowed to persist unless contrary evidence comes in from an observation.

13Note that alternative tracking logic can address the tracking difficulties in the move-stop-move
maneuver, as described in Sec. 4.1.4.1.
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confirms two “tracks” (red circles in Fig. 4.10(c)) due to the classification results of

the HSI chip. Two hyperspectral observations are formed with vehicle class ID other

than the two vehicles and their nearest neighbors. The class ID of both observations

are outside the vehicles’ spectral gate, and therefore, unassociated. The tracker ini-

tiates a track for each hypespectral observation. After t = 10s, the two “tracks”

eventually meet the deletion criteria. The tracker initiates an (unknown) track for

the class ID 32 (green) vehicle. After hyperspectral scanning, the tracker assigns the

hyperspectral observation with correct class ID to the track. The tracker correctly

identifies both target tracks throughout the rest of the simulation (Fig. 4.10(d)).
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  Car 17: 0  Car 32: 0

(a) Time t = 0.8s.

  Car 17: 0  Car 32: 0

(b) Time t = 1.0s.

  Car 17: 0  Car 32: 0

(c) Time t = 1.2s.

  Car 17: 0.325  Car 32: 0.005

(d) Time t = 2s.

Figure 4.9: Hyperspectral-augmented tracking version of Fig. 4.4 for the
self-organizing map (Part A). The tracker initiates tracks for both vehicles with
an unknown class ID (a). Prior to hyperspectral scanning, the tracker deletes the
track for the class ID 32 (green) vehicle due to measurement dropouts (b). The track
for the class ID 17 (red1) vehicle, however, receives enough measurements to stay alive
(c). The tracker scans both track regions and correctly identifies both tracks (d).
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  Car 17: 0.775  Car 32: 0.615

(a) Time t = 6s.

  Car 17: 0.61  Car 32: 0.6075

(b) Time t = 8s.

  Car 17: 0.501  Car 32: 0.486

(c) Time t = 10s.

  Car 17: 0.59357  Car 32: 0.60214

(d) Time t = 14s.

Figure 4.10: Hyperspectral-augmented tracking version of Fig. 4.4 for the
self-organizing map (Part B). The tracker correctly identifies both tracks until
they reach the intersection (a). At the intersection, both vehicles come to a complete
stop, and their tracks continue to propagate. The tracker deletes the class ID 32
(green) track for the class ID 32 (green) vehicle first (b). Shortly after t = 8s, the
tracker deletes class ID 17 (track). As the vehicles start moving again, the class ID 32
(green) vehicle is too slow for the tracker to detect its motion. The class ID 17 (red1)
vehicle speeds up first, and the tracker initiates and correctly identifies its track (c).
The tracker correctly identifies both tracks throughout the rest of the simulation (d).

4-28



4.3.3 Fuzzy C-Means Configuration 2. Fig. 4.11 provides an FCM simula-

tion run for configuration 2 of Sec. 4.2. At t = 0.4s, the tracker has already initiated

tracks for both vehicles, but the hyperspectral sensor has not scanned both tracks

(Fig. 4.11(a)). Sometime between t = 0.4s and t = 6s, the sensor scans both tracks

and the tracker assigns the hyperspectral observation with the correct class ID to each

track. The tracker initiates a “track” using an unassociated hyperspectral observation

with a vehicle class ID other than the two vehicles and their nearest neighbors (red

circle in Fig. 4.11(b)). This is due to the classification results in the HSI chip, where

the classifier incorrectly classifies several contiguous pixels.14 The hyperspectral sen-

sor keeps scanning the track region and the classifier continues to misclassify the same

pixel region. Hence, the false alarm persists throughout the rest of the simulation.

As the vehicles come to a complete stop at the intersection, the tracks propagate and

swap before track deletion15 (Fig. 4.11(c)). Since the tracks fail to receive updates,

the tracker deletes them. Once the vehicle starts moving again, the tracker initiates

tracks for both vehicles ((Fig. 4.11(d)). The hyperspectral sensor scans both vehicles

and the tracker assigns the hyperspectral observation with the correct class ID to each

track ((Fig. 4.11(e)). The tracks are correctly identified throughout the rest of the

simulation ((Fig. 4.11(f)).

14The misclassification is due to the spectrum of certain mixtures of background. The spectrum
is similar in a Euclidean sense to one of the vehicle classes.

15Note that alternative tracking logic can address the tracking difficulties in the move-stop-move
maneuver, as described in Sec. 4.1.4.1.
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(a) Time t = 0.4s.
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(b) Time t = 6s.
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(c) Time t = 8s.

  Car 17: 0.618  Car 32: 0.665

100 200 300 400 500 600

(d) Time t = 10s.
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100 200 300 400 500 600

(e) Time t = 12s.

  Car 17: 0.60688  Car 32: 0.68063
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(f) Time t = 16s.

Figure 4.11: Hyperspectral-augmented tracking version of Fig. 4.6 for fuzzy c-means. The tracker initiates a
track for each vehicle (a). After hyperspectral scanning, the tracker correctly identifies both tracks (b). At the intersection,
the tracks propagate and swap before track deletion (c). After the vehicles start moving again, the tracker initiates tracks
on both vehicles, the hypespectral sensor scans both vehicles, and the tracker assigns the hyperspectral observation with the
correct class ID to each track (e). The tracks are correctly identified throughout the rest of the simulation (f).
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4.3.4 Self-Organizing Map Configuration 2. Fig.4.12 shows a simulation

run of the SOM implementation for configuration 2 using SOM configuration 8 from

Table 4.3. The parameters are [17,32], γ = 0.5, ROI line scanner, SOM lattice points,

filtered map, and scenario 2. Figs. 4.12(a)-(c) are similar to Figs. 4.11(a)-(c). The

main differences are: (1) Although the PID for the SOM increased at a slower rate,

by t = 8s, it is higher than the PID for the FCM. (2) The SOM does not generate a

false alarm, which implies that the SOM-based classifier handles background mixtures

better than the FCM classifier. These differences are likely due to the effectiveness

of the filtered SOM lattice, for which the samples that are highly influenced by back-

ground spectra were removed from the SOM. At t = 10s, the class ID 17 (red1)

track is still alive, while the tracker initiates an (unknown) track for the class ID 32

(green) vehicle (Fig. 4.12(d)). The hyperspectral sensor scans both track regions and

the tracker assigns the hyperspectral observation with the correct class ID to each

track (Fig. 4.12(e)). The tracks are correctly identified throughout the rest of the

simulation (Fig. 4.12(f)).

4-31



  Car 17: 0  Car 32: 0

100 200 300 400 500 600
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(b) Time t = 6s.
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(c) Time t = 8s.
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(d) Time t = 10s.
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(f) Time t = 16s.

Figure 4.12: Hyperspectral-augmented tracking version of Fig. 4.6 for the self-organizing map. By t = 0.4s,
the tracker has not performed track initiation for both vehicles (a). The tracker eventually performs track initiation and
correctly identifies both tracks (b). At the intersection, the tracks continue to propagate prior to deletion (c). The tracker
initiates a track for the green vehicle, while the track for the red vehicle is still alive (d). The tracker eventually deletes the
track for the red vehicle, initiates a new track, and assigns the hyperspectral observation with the correct class ID to each
track (e). The tracker correctly identifies both tracks throughout the rest of the simulation (f).
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4.4 Quantitative Results

The quantitative results are based on the ensemble statistics using the per-

formance measures described in Sec. 3.9. The tables and figures presented in this

section summarize the results for the two classification methods of the hyperspectral-

augmented tracker. The change in performance is represented by the percent +/−,

which is calculated as follows:

Percent + /− =
measHSI −measkin

measkin

× 100 (4.1)

where meas is the performance measure. The symbol ‘+’ and ‘−’ indicate a gain and

a loss in performance, respectively, when tracking is augmented with hyperspectral

data.

The experimental results indeed show that the hyperspectral-augmented track-

ing significantly outperformed the kinematic-only tracking, regardless of the classifi-

cation algorithm used. Clearly, this novel work is very promising since it incorporates

hyperspectral data in a feature-aided tracker, producing positive performance results.

However, the results suggest that a tradeoff exists between performance and robust-

ness.

In terms of performance, the hyperspectral-augmented tracking concept is not

only feasible given the current technology, it is also very effective at increasing the

probability of correct track identification (PID) in ambiguous situations. Furthermore,

the overall PID is consistently higher for scenario 1, which further emphasizes the

improved tracking performance of the hyperspectral-augmented tracker in highly am-

biguous situations (typical in complex urban environments). In terms of robustness,

however, the current implementation of the hyperspectral-augmented tracker has a

potential weakness. When the kinematic-only tracker “resolves” swapped tracks (i.e.,

tracks perform a swap, then swap back in an ambiguous situation, which is simulated

when track stitching does not maintain track continuity, as described in Sec. 4.2), it

performed slightly better than the hyperspectral-augmented tracker. This is due to
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two reasons: (1) In the kinematic-only tracking simulations, the tracker initiates a

track using the nearest vehicle, so it is not penalized prior to track stitching (which

occurs after track confirmation). (2) In the hyperspectral-augmented tracking, the hy-

perspectral sensor is cued after the tracker confirms a track, so the track is penalized

from the time of track initiation to the time of chip formation. These reasons, which

are based on the design choices described in Sec. 4.2, obscured the PID-non-swapped

track results.

Table 4.4 provides the ensemble statistics for the kinematic-only configurations.

The PID,j, Passoc,j, Pdeclare,j|assoc,j, and PID|declare,j measures are track-specific, where

j is the track index. Each table consists of two rows for each measure: the first and

second row refer to the first and second truth trajectory, respectively. For example,

the truth trajectories for configuration 1 of the kinematic-only are vehicles [17,31].

The first and second row thus refer to vehicle 17 and 31, respectively. Furthermore,

the second row of the table provides the configuration index. The indices for the

different configurations are defined in Sec. 4.1.4.

Statistic Kinematic-Only Configurations

1 2 3 4

PID,j- 19.56% 34.19% 16.95% 34.40%
Swapped Tracks 17.73% 34.16% 17.81% 34.49%

PID,j- 59.81% 68.43% 60.35% 69.02%
Non-swapped Tracks 57.22% 64.96% 56.70% 64.72%

PID,j 30.03% 62.61% 30.40% 65.91%
28.39% 59.72% 31.81% 62.00%

Passoc,j 60.93% 71.86% 61.17% 72.22%
57.15% 68.10% 56.90% 68.02%

Pdeclare,j|assoc,j 100.00% 100.00% 100.00% 100.00%

100.00% 100.00% 100.00% 100.00%

PID,j|declare,j 49.41% 87.22% 49.86% 91.24%

49.69% 87.67% 55.77% 91.17%

Table 4.4: Ensemble statistics for the kinematic-only configurations.

4-34



4.4.1 Fuzzy C-Means. Table 4.5 summarizes the results of the FCM config-

urations. The table layout described previously for Table 4.4 also applies to Table 4.5,

with the addition of the following:

• The PD, PFA, and EWA measures apply to hyperspectral-augmented tracking

only; therefore, they are blank for the kinematic-only tracker.

• The term “swapped tracks” refers to simulation runs in which the tracks remain

swapped after an ambiguous situation. Conversely, the term “non-swapped

tracks” refers to simulations runs in which tracks do not remain swapped (or

the kinematic-only tracker is able to “resolve” a track swap or loss event) after

an ambiguous situation.

The ensemble statistics summarized in Table 4.5 consistently demonstrate that

the PID of swapped tracks improved significantly when augmented by hyperspectral

data. In Table 4.6, the average gain in performance is 124.8% PID for swapped

tracks. Because of the reasons discussed previously, the hyperspectral-augmented

tracker appears to perform slightly worse than the kinematic-only tracker for non-

swapped tracks, with an average decrease in performance of 11.79% PID. The 30.55%

increase in performance for the overall PID (which is based on all simulations) further

supports the improved performance.

Performance for PID for swapped tracks is more significant with scenario 1

than scenario 2. This can be attributed to the “level” of ambiguity between the

two scenarios. The vehicles in scenario 1 are closely spaced apart (from t = 0s to

t = 15s), where the likelihood for track swaps is much higher; whereas in scenario

2, the vehicles only experience the ambiguous situation at the intersection. Another

performance measure that supports this observation is Passoc, which scores the truth-

to-track associations. The Passoc for scenario 1 is smaller compared to scenario 2. The

misassociations are clearly due to the high level of ambiguity.

In terms of classifier performance, the equal-weighted classification accuracy

(EWA) shows that the FCM classifier performed rather effectively in evaluating the
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simulated mixed spectra. A higher EWA is definitely preferred, and the ≈ 75% average

accuracy for all four configurations can be attributed to the complex mixtures in the

scene that the FCM algorithm fails to address. This is supported by the low PD and

slightly higher PFA.

The remaining track measures also provide interesting insights on the perfor-

mance of the tracker. Since the kinematic-only tracker always initialized a track’s

class ID using the nearest vehicle, it is expected that Pdeclare|assoc is 100%. Recall

that this measure penalized a track when its class ID was not valid or “unknown.”

For the hyperspectral-augmented tracker, each track was assigned the unknown class

ID ≈ 5% of the frames. This is not surprising since initial hyperspectral scanning

of a track region is cued by track confirmation. Depending on sensor dynamics, the

hyperspectral sensor can take up to several seconds to steer its mirrors to the track

region. In addition to the initial assignment of the unknown class ID, the PID|declare

measure also penalized the track when its class ID did not match with the class ID

of the vehicle that it tracked. Generally speaking, for the highly ambiguous scenario

1, the hyperspectral-augmented tracker performed very well.
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Statistic FCM Configurations Average

1 2 3 4

PID,j- 50.01% 60.67% 44.53% 59.48%
55.18%

Swapped Tracks 54.20% 65.47% 44.95% 62.10%
PID,j- 48.66% 60.98% 46.68% 60.60%

55.40%
Non-swapped Tracks 54.73% 65.38% 44.39% 61.76%

PID,j 49.66% 60.93% 45.20% 60.50%
55.32%

54.35% 65.40% 44.75% 61.79%
Passoc,j 60.13% 71.65% 60.45% 71.42%

66.46%
62.99% 71.21% 62.34% 71.46%

Pdeclare,j|assoc,j 95.18% 94.98% 95.33% 95.50%
95.48%

95.55% 96.32% 94.97% 95.98%
PID,j|declare,j 86.70% 89.55% 78.52% 88.74%

86.85%
90.31% 95.34% 75.53% 90.11%

PD 73.28% 69.20% 60.49% 55.22% 64.55%
PFA 13.27% 12.21% 12.69% 16.57% 13.68%
EWA 74.27% 74.23% 79.35% 71.87% 74.93%

Table 4.5: Ensemble statistics for FCM configurations.

Statistic Percent +/- for Configurations Average

1 2 3 4

PID,j- 155.62% 77.45% 162.71% 72.91%
124.80%

Swapped Tracks 205.66% 91.67% 152.34% 80.04%
PID,j- -18.63% -10.89% -22.65% -12.20%

-11.79%
Non-swapped Tracks -4.35% 0.66% -21.70% -4.58%

PID,j 65.38% -2.69% 48.65% -8.20%
30.55%

91.40% 9.51% 40.67% -0.34%
Passoc,j -1.32% -0.29% -1.18% -1.11%

3.19%
10.22% 4.57% 9.56% 5.06%

Pdeclare,j|assoc,j -4.82% -5.02% -4.67% -4.50%
-4.52%

-4.45% -3.68% -5.03% -4.02%
PID,j|declare,j 75.45% 2.68% 57.46% -2.74%

32.20%
81.75% 8.75% 35.42% -1.16%

Table 4.6: Percent +/− from kinematic-only tracking baseline to FCM
hyperspectral-augmented tracking.
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4.4.2 Self-Organizing Map. Figs. 4.13 - 4.20 compare the results of the

kinematic-only tracker and the SOM implementation. Clearly, the SOM results are

more extensive because the SOM implementation consists of 48 configurations and

nine additional measures, namely, PID,j Average, PD Average, PFA Average, PID,j

Original, PID,j Filtered, PD Original, PD Filtered, PFA Original, and PFA Filtered.

These additional measures are based on the various SOM parameters described in

Sec. 4.1.4.2. In addition to the descriptions for the table layout described above, the

following provides additional information for the SOM tables:

• The additional nine measures apply to hyperspectral-augmented tracking only;

therefore, they are blank for the kinematic-only tracker.

• The SOM configuration set index in the first row is defined in the configuration

set list of Sec. 4.1.4.

• Several measures are blank because not all configurations compute these mea-

sures. For example, the PID,j Original is only computed by configurations 1,

2, 5, and 6 of configuration set A. Configurations 3, 4, 7 and 8 do not (refer

to Table 4.3 for the configuration settings and Sec. 4.1.4.2 for the configuration

descriptions).

Figs. 4.13, 4.15, 4.17, and 4.19 provide the ensemble statistics for the classifier

and tracking performance measures. Figs. 4.14, 4.16, 4.18, and 4.20 are the per-

cent gain or loss (+/−) in performance for each performance measure between the

kinematic-only tracker and the hyperspectral augmented tracker. Fig. 4.14 corre-

sponds with Fig. 4.13, Fig. 4.16 corresponds with Fig. 4.15, and so on.

The ensemble statistics summarized in Table 4.7 demonstrate that the PID

improved significantly when augmented by hyperspectral data. For example, the

overall average performance gain is 28.11% PID, with an average of 121.48% PID

for swapped tracks. Furthermore, the overall PID and the PID for swapped tracks

show that for the highly ambiguous scenario 1, the tracker performed very well, as

shown in Figs. 4.14 and 4.18. For comparison, the hyperspectral-augmented tracker
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experienced a loss in performance, 13.82% PID, for the simulation runs in which the

kinematic-only tracker was able to “resolve” track swaps. The reasons for this are

explained previously in Sec. 4.4.

In terms of classifier performance, Table 4.9 shows that the filtered SOM out-

performed the original SOM by 6.54% overall PID. Although the PD measure shows

a loss of performance for the filtered SOM, its PFA is significantly lower than the

original SOM. There is also a modest performance improvement in the EWA of the

filtered SOM. Furthermore, Table 4.9 shows that the filtered SOM outperformed the

FCM FCM classifier. Clearly, the filtered SOM approach is highly effective in dealing

with mixed spectra. This is also supported by its significantly low PFA (2.39% versus

13.47% for the original SOM and 13.68% for the FCM).

Additionally, the SOM implementation addressed several key parameters. The

remainder of this section provides an analysis of the various parameter settings used

in the SOM simulations.

1. The hyperspectral sensor has two sensor modes, ROI (configuration set A) and

Pushbroom (configuration set B). With the pushbroom mode, the sensor took a

longer time to initially scan the track region because it swept the entire scene.

During this time, the PID of the track was penalized. As expected, the PID

for configuration set B is lower than set A by a few percentage points (4-7%).

Hence, ROI scanning generated better performance results.

2. The matching neuron determined by the SOM-based classifier can be modeled

either as lattice points (for ROI scanning, configuration set A; for Pushbroom,

configuration set B) or their corresponding weight vectors (for ROI scanning,

configuration set C; for Pushbroom, configuration set D). Comparing set A

with set C and set B with set D, the percent difference in the PID is statistically

insignificant. Hence, the relationship among the weight vectors in the high-

dimensional space is preserved in the two-dimensional space (as discussed in

the SOM theory of Sec. 2.2.3.2). The consequence is that the two-dimensional
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SOM lattice points can be used instead of the 195-dimensional weight vectors;

thus, significantly reducing the number of computations.

3. Additional weighting γ values (0.99 and 0.01) are evaluated to vary the level

of influence that the hyperspectral signature of a hyperspectral observation can

have on the data association. Recall that the cost function for a hyperspectral

observation is a sum of weighted kinematic and spectral distances. Configuration

set A, E, and F provide the results for different values of γ = {0.99,0.5,0.01}
(see Table 4.3 for the configuration settings). The percent difference among the

three γ values are statistically insignificant. In general, the weighting value does

not matter, since the performance results are essentially the same. This is due

to the fact that the kinematic distance and spectral distance of a hyperspectral

observation are highly correlated. Since the spectral Mahalanobis distance is

based on the assumption that the hyperspectral data is Gaussian, which is

known to be false, this distance can be taken out of the cost function, and the

cost function can be fully represented by its kinematic distance without any loss

in tracking performance.
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Statistic SOM Configurations Average

A B C D E

1 3 9 11 17 19 25 27 33 35 37 39

PID,j- 42.76% 51.97% 45.79% 48.79% 44.38% 52.17% 45.47% 48.79% 43.51% 51.56% 43.54% 52.02%
48.3%

Swapped Tracks 44.37% 53.66% 46.81% 52.50% 42.14% 51.75% 46.94% 52.50% 44.13% 53.10% 46.62% 53.55%
PID,j- 41.60% 51.74% 45.93% 50.03% 38.96% 52.16% 45.93% 50.03% 40.28% 51.74% 44.50% 50.24%

47.9%
Non-swapped Tracks 44.40% 54.65% 44.31% 51.38% 43.21% 53.74% 43.64% 51.38% 44.66% 54.73% 45.78% 53.85%

PID,j 42.46% 51.91% 45.83% 49.11% 42.97% 52.17% 45.59% 49.11% 42.67% 51.61% 43.79% 51.56%
48.2%

44.38% 53.93% 46.14% 52.20% 42.43% 52.29% 46.05% 52.20% 44.27% 53.54% 46.39% 53.63%
Passoc,j 59.72% 60.10% 65.35% 65.45% 59.34% 59.96% 65.24% 65.45% 59.61% 59.94% 59.66% 60.10%

61.8%
61.88% 62.12% 61.76% 62.33% 61.81% 62.29% 61.66% 62.33% 61.76% 61.90% 61.72% 62.20%

Pdeclare,j|assoc,j 93.13% 94.66% 88.15% 89.00% 93.08% 94.81% 87.81% 89.00% 93.14% 94.58% 93.16% 94.66%
92.2%

93.40% 95.53% 87.60% 88.05% 93.28% 95.33% 87.60% 88.05% 93.35% 95.47% 93.52% 95.53%
PID,j|declare,j 76.46% 91.32% 79.56% 84.39% 77.82% 91.96% 79.46% 84.39% 76.90% 91.15% 79.07% 90.65%

84.6%
76.56% 90.88% 85.28% 95.23% 73.58% 88.08% 85.24% 95.23% 76.53% 90.58% 79.99% 90.30%

PID,j 42.46% 51.91% 45.83% 49.11% 42.97% 52.17% 45.59% 49.11% 42.67% 51.61% 43.79% 51.56%
48.2%

Average 44.38% 53.93% 46.14% 52.20% 42.43% 52.29% 46.05% 52.20% 44.27% 53.54% 46.39% 53.63%
PID,j 42.46% 45.83% 42.97% 45.59% 42.67% 43.79%

44.4%
Original 44.38% 46.14% 42.43% 46.05% 44.27% 46.39%
PID,j 51.91% 49.11% 52.17% 49.11% 51.61% 51.56%

51.9%
Filtered 53.93% 52.20% 52.29% 52.20% 53.54% 53.63%

PD 84.56% 85.49% 82.15% 83.03% 84.81% 85.42% 82.19% 83.03% 84.60% 85.48% 84.61% 85.46% 84.2%
PFA 14.40% 2.57% 11.30% 1.91% 14.43% 2.57% 11.41% 1.91% 14.16% 2.57% 14.44% 2.59% 7.9%
EWA 81.90% 92.05% 87.53% 92.58% 82.09% 91.91% 87.48% 92.58% 82.08% 92.06% 81.77% 92.06% 88.0%

PD Average 84.56% 85.49% 82.15% 83.03% 84.81% 85.42% 82.19% 83.03% 84.60% 85.48% 84.61% 85.46% 84.2%
PFA Average 14.40% 2.57% 11.30% 1.91% 14.43% 2.57% 11.41% 1.91% 14.16% 2.57% 14.44% 2.59% 7.9%
PD Original 84.56% 82.15% 84.81% 82.19% 84.60% 84.61% 83.8%
PD Filtered 85.49% 83.03% 85.42% 83.03% 85.48% 85.46% 84.7%

PFA Original 14.40% 11.30% 14.43% 11.41% 14.16% 14.44% 13.4%
PFA Filtered 2.57% 1.91% 2.57% 1.91% 2.57% 2.59% 2.4%

Figure 4.13: Ensemble statistics for SOM configuration set A, B, C, D, and E using scenario 1 and truth trajectories for
class ID 17 and 31.
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Statistic Percent +/– for Configurations Average

A B C D E

1 3 9 11 17 19 25 27 33 35 37 39

PID,j- 118.57% 165.64% 134.05% 149.40% 126.87% 166.68% 132.44% 149.40% 122.41% 163.56% 122.59% 165.91%
159.75%

Swapped Tracks 150.20% 202.62% 163.99% 196.09% 137.65% 191.85% 164.74% 196.09% 148.87% 199.46% 162.88% 202.00%
PID,j- -30.44% -13.49% -23.20% -16.34% -34.85% -12.78% -23.20% -16.34% -32.65% -13.49% -25.60% -16.00%

-18.11%
Non-swapped Tracks -22.41% -4.49% -22.56% -10.20% -24.49% -6.09% -23.74% -10.20% -21.95% -4.35% -20.00% -5.90%

PID,j 41.40% 72.88% 52.62% 63.56% 43.12% 73.74% 51.84% 63.56% 42.11% 71.87% 45.84% 71.70%
65.13%

56.29% 89.93% 62.49% 83.85% 49.43% 84.15% 62.19% 83.85% 55.93% 88.56% 63.38% 88.88%
Passoc,j -1.99% -1.36% 7.24% 7.41% -2.61% -1.60% 7.08% 7.41% -2.17% -1.63% -2.09% -1.37%

4.83%
8.29% 8.70% 8.07% 9.08% 8.17% 9.00% 7.90% 9.08% 8.08% 8.32% 8.00% 8.84%

Pdeclare,j|assoc,j -6.87% -5.34% -11.85% -11.00% -6.92% -5.19% -12.19% -11.00% -6.86% -5.42% -6.84% -5.34%
-7.84%

-6.60% -4.47% -12.40% -11.95% -6.72% -4.67% -12.40% -11.95% -6.65% -4.53% -6.48% -4.47%
PID,j|declare,j 54.73% 84.80% 61.00% 70.78% 57.49% 86.11% 60.81% 70.78% 55.62% 84.45% 60.02% 83.45%

70.74%
54.08% 82.89% 71.63% 91.64% 48.07% 77.25% 71.55% 91.64% 54.01% 82.29% 60.97% 81.73%

Figure 4.14: Percent +/− from kinematic-only configuration 1 to SOM hyperspectral-augmented tracking configuration
sets A, B, C, D, and E using scenario 1 and truth trajectories for class ID 17 and 31.
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Statistic SOM Configurations Average

A B C D E

2 4 10 12 18 20 26 28 34 36 38 40

PID,j- 60.51% 58.68% 56.40% 55.87% 61.11% 60.31% 56.02% 57.20% 59.76% 57.41% 60.71% 57.34%
60.76%

Swapped Tracks 64.60% 65.72% 57.43% 61.62% 64.05% 65.36% 56.41% 61.56% 64.53% 65.12% 64.59% 65.84%
PID,j- 61.00% 59.30% 54.58% 54.98% 61.52% 59.60% 54.57% 56.06% 60.59% 58.41% 60.91% 59.36%

60.94%
Non-swapped Tracks 64.40% 65.57% 59.59% 62.23% 64.28% 65.72% 59.14% 61.99% 62.74% 65.40% 64.91% 65.67%

PID,j 60.91% 59.19% 54.89% 55.13% 61.45% 59.72% 54.82% 56.26% 60.44% 58.24% 60.88% 59.02%
60.91%

64.43% 65.59% 59.22% 62.12% 64.24% 65.66% 58.68% 61.91% 63.05% 65.35% 64.86% 65.70%
Passoc,j 72.05% 72.74% 72.12% 72.21% 72.04% 72.34% 71.65% 71.84% 72.08% 72.62% 72.14% 72.64%

71.94%
71.74% 71.39% 71.99% 72.02% 71.18% 71.13% 71.95% 71.97% 71.87% 71.46% 71.88% 71.41%

Pdeclare,j|assoc,j 94.61% 92.41% 87.84% 86.52% 95.18% 93.06% 88.34% 86.94% 94.10% 92.12% 94.25% 92.41%
92.55%

94.62% 96.26% 88.79% 90.88% 95.65% 96.82% 88.37% 90.60% 94.22% 95.84% 94.97% 96.32%
PID,j|declare,j 89.41% 88.13% 86.24% 88.25% 89.61% 88.80% 86.19% 90.14% 89.18% 87.08% 89.55% 87.92%

91.42%
94.86% 95.44% 92.55% 94.92% 94.30% 95.32% 92.18% 94.97% 93.06% 95.42% 94.98% 95.52%

PID,j 60.91% 59.19% 54.89% 55.13% 61.45% 59.72% 54.82% 56.26% 60.44% 58.24% 60.88% 59.02%
60.91%

Average 64.43% 65.59% 59.22% 62.12% 64.24% 65.66% 58.68% 61.91% 63.05% 65.35% 64.86% 65.70%
PID,j 60.91% 54.89% 61.45% 54.82% 60.44% 60.88%

60.66%
Original 64.43% 59.22% 64.24% 58.68% 63.05% 64.86%
PID,j 59.19% 55.13% 59.72% 56.26% 58.24% 59.02%

61.16%
Filtered 65.59% 62.12% 65.66% 61.91% 65.35% 65.70%

PD 77.92% 79.48% 77.35% 78.92% 78.75% 80.22% 77.47% 78.91% 77.90% 79.57% 77.92% 79.53% 78.66%
PFA 12.70% 2.27% 10.59% 1.71% 12.50% 2.26% 10.54% 1.74% 12.58% 2.27% 12.74% 2.28% 7.02%
EWA 81.74% 91.89% 86.08% 93.28% 81.90% 91.78% 86.14% 93.09% 81.75% 91.92% 81.72% 91.90% 87.77%

PD Average 77.92% 79.48% 77.35% 78.92% 78.75% 80.22% 77.47% 78.91% 77.90% 79.57% 77.92% 79.53% 78.66%
PFA Average 12.70% 2.27% 10.59% 1.71% 12.50% 2.26% 10.54% 1.74% 12.58% 2.27% 12.74% 2.28% 7.02%
PD Original 77.92% 77.35% 78.75% 77.47% 77.90% 77.92% 77.89%
PD Filtered 79.48% 78.92% 80.22% 78.91% 79.57% 79.53% 79.44%

PFA Original 12.70% 10.59% 12.50% 10.54% 12.58% 12.74% 11.94%
PFA Filtered 2.27% 1.71% 2.26% 1.74% 2.27% 2.28% 2.09%

Figure 4.15: Ensemble statistics for SOM configuration set A, B, C, D, and E using scenario 2 and truth trajectories for
class ID 17 and 31.
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Statistic Percent +/– for Configurations Average

A B C D E

2 4 10 12 18 20 26 28 34 36 38 40

PID,j- 76.97% 71.62% 64.95% 63.42% 78.74% 76.38% 63.85% 67.30% 74.77% 67.92% 77.57% 67.70%
77.78%

Swapped Tracks 89.12% 92.40% 68.13% 80.38% 87.50% 91.34% 65.13% 80.22% 88.91% 90.65% 89.10% 92.76%
PID,j- -10.86% -13.34% -20.24% -19.66% -10.09% -12.91% -20.25% -18.07% -11.46% -14.64% -10.99% -13.25%

-8.47%
Non-swapped Tracks -0.86% 0.94% -8.27% -4.20% -1.04% 1.17% -8.95% -4.57% -3.41% 0.68% -0.07% 1.10%

PID,j -2.71% -5.45% -12.33% -11.94% -1.85% -4.62% -12.45% -10.15% -3.46% -6.98% -2.77% -5.74%
-0.27%

7.89% 9.83% -0.84% 4.02% 7.57% 9.94% -1.75% 3.67% 5.57% 9.43% 8.60% 10.01%
Passoc,j 0.27% 1.23% 0.36% 0.49% 0.25% 0.67% -0.29% -0.02% 0.30% 1.06% 0.39% 1.09%

2.86%
5.35% 4.83% 5.71% 5.76% 4.52% 4.45% 5.64% 5.67% 5.53% 4.93% 5.55% 4.86%

Pdeclare,j|assoc,j -5.39% -7.59% -12.16% -13.48% -4.82% -6.94% -11.66% -13.06% -5.90% -7.88% -5.75% -7.59%
-7.45%

-5.38% -3.74% -11.21% -9.12% -4.35% -3.18% -11.63% -9.40% -5.78% -4.16% -5.03% -3.68%
PID,j|declare,j 2.52% 1.05% -1.12% 1.18% 2.74% 1.81% -1.18% 3.35% 2.24% -0.16% 2.67% 0.80%

4.54%
8.20% 8.87% 5.57% 8.27% 7.57% 8.73% 5.15% 8.33% 6.15% 8.85% 8.34% 8.95%

Figure 4.16: Percent +/− from kinematic-only configuration 2 to SOM hyperspectral-augmented tracking configuration
sets A, B, C, D, and E using scenario 2 and truth trajectories for class ID 17 and 31.
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Statistic SOM Configurations Average

A B C D F

5 7 13 15 21 23 29 31 41 43 45 47

PID,j- 47.21% 52.47% 44.73% 46.48% 47.27% 52.47% 44.68% 46.48% 46.62% 53.21% 45.64% 51.80%
47.39%

Swapped Tracks 45.49% 49.44% 44.34% 46.64% 45.36% 49.44% 44.25% 46.64% 45.03% 50.08% 42.97% 48.60%
PID,j- 43.25% 47.31% 43.12% 46.04% 43.92% 47.31% 43.43% 46.04% 43.53% 47.70% 44.96% 47.30%

46.16%
Non-swapped Tracks 41.64% 50.10% 49.55% 48.21% 42.12% 50.10% 49.55% 48.21% 41.28% 50.45% 42.84% 49.86%

PID,j 45.99% 50.87% 44.23% 46.34% 46.23% 50.87% 44.29% 46.34% 45.67% 51.50% 45.43% 50.41%
47.02%

44.10% 49.68% 46.22% 47.20% 44.20% 49.68% 46.16% 47.20% 43.68% 50.21% 42.92% 49.05%
Passoc,j 59.24% 59.09% 67.00% 62.97% 59.21% 59.09% 66.64% 62.97% 59.04% 59.74% 59.45% 58.94%

60.69%
60.85% 59.90% 59.91% 60.53% 60.85% 59.90% 59.88% 60.53% 60.38% 60.36% 60.21% 59.84%

Pdeclare,j|assoc,j 94.39% 93.12% 89.37% 85.69% 94.50% 93.12% 89.29% 85.69% 94.48% 92.89% 94.76% 93.17%
91.34%

94.93% 91.52% 87.88% 85.20% 94.80% 91.52% 87.89% 85.20% 94.84% 91.57% 94.67% 91.60%
PID,j|declare,j 81.90% 92.43% 74.09% 85.87% 82.35% 92.43% 74.68% 85.87% 81.57% 92.84% 80.70% 91.71%

85.04%
76.60% 90.66% 87.59% 91.28% 76.85% 90.66% 87.52% 91.28% 76.39% 90.90% 75.30% 89.61%

PID,j 45.99% 50.87% 44.23% 46.34% 46.23% 50.87% 44.29% 46.34% 45.67% 51.50% 45.43% 50.41%
47.02%

Average 44.10% 49.68% 46.22% 47.20% 44.20% 49.68% 46.16% 47.20% 43.68% 50.21% 42.92% 49.05%
PID,j 45.99% 44.23% 46.23% 44.29% 45.67% 45.43%

44.93%
Original 44.10% 46.22% 44.20% 46.16% 43.68% 42.92%
PID,j 50.87% 46.34% 50.87% 46.34% 51.50% 50.41%

49.11%
Filtered 49.68% 47.20% 49.68% 47.20% 50.21% 49.05%

PD 72.10% 48.22% 71.41% 50.34% 72.11% 48.22% 71.42% 50.34% 72.09% 47.90% 72.00% 48.31% 60.37%
PFA 14.44% 3.01% 10.77% 2.15% 14.48% 3.01% 11.10% 2.15% 14.28% 2.89% 14.51% 3.06% 7.99%
EWA 81.33% 81.12% 86.63% 87.27% 81.50% 81.12% 86.60% 87.27% 81.90% 81.23% 81.53% 80.97% 83.21%

PD Average 72.10% 48.22% 71.41% 50.34% 72.11% 48.22% 71.42% 50.34% 72.09% 47.90% 72.00% 48.31% 60.37%
PFA Average 14.44% 3.01% 10.77% 2.15% 14.48% 3.01% 11.10% 2.15% 14.28% 2.89% 14.51% 3.06% 7.99%
PD Original 72.10% 71.41% 72.11% 71.42% 72.09% 72.00% 71.86%
PD Filtered 48.22% 50.34% 48.22% 50.34% 47.90% 48.31% 48.89%

PFA Original 14.44% 10.77% 14.48% 11.10% 14.28% 14.51% 13.26%
PFA Filtered 3.01% 2.15% 3.01% 2.15% 2.89% 3.06% 2.71%

Figure 4.17: Ensemble statistics for SOM configuration set A, B, C, D, and E using scenario 1 and truth trajectories for
class ID 17 and 32.
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Statistic Percent +/– for Configurations Average

A B C D F

5 7 13 15 21 23 29 31 41 43 45 47

PID,j- 178.55% 209.57% 163.88% 174.20% 178.89% 209.57% 163.60% 174.20% 175.07% 213.91% 169.26% 205.63%
172.94%

Swapped Tracks 155.38% 177.56% 148.95% 161.83% 154.68% 177.56% 148.41% 161.83% 152.82% 181.15% 141.21% 172.85%
PID,j- -28.33% -21.61% -28.55% -23.71% -27.23% -21.61% -28.04% -23.71% -27.87% -20.96% -25.51% -21.63%

-21.01%
Non-swapped Tracks -26.56% -11.64% -12.60% -14.98% -25.72% -11.64% -12.60% -14.98% -27.18% -11.02% -24.43% -12.06%

PID,j 51.25% 67.32% 45.47% 52.42% 52.06% 67.32% 45.68% 52.42% 50.19% 69.39% 49.41% 65.79%
51.25%

38.64% 56.16% 45.29% 48.38% 38.93% 56.16% 45.10% 48.38% 37.32% 57.85% 34.93% 54.20%
Passoc,j -3.16% -3.41% 9.53% 2.93% -3.21% -3.41% 8.93% 2.93% -3.49% -2.35% -2.82% -3.66%

2.90%
6.93% 5.27% 5.28% 6.37% 6.93% 5.27% 5.22% 6.37% 6.11% 6.07% 5.80% 5.15%

Pdeclare,j|assoc,j -5.61% -6.88% -10.63% -14.31% -5.50% -6.88% -10.71% -14.31% -5.52% -7.11% -5.24% -6.83%
-8.66%

-5.07% -8.48% -12.12% -14.80% -5.20% -8.48% -12.11% -14.80% -5.16% -8.43% -5.33% -8.40%
PID,j|declare,j 64.24% 85.36% 48.58% 72.21% 65.15% 85.36% 49.77% 72.21% 63.58% 86.19% 61.83% 83.92%

61.48%
37.34% 62.56% 57.05% 63.66% 37.79% 62.56% 56.92% 63.66% 36.96% 62.98% 35.01% 60.67%

Figure 4.18: Percent +/− from kinematic-only configuration 3 to SOM hyperspectral-augmented tracking configuration
sets A, B, C, D, and E using scenario 1 and truth trajectories for class ID 17 and 32.
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Statistic SOM Configurations Average

A B C D F

6 8 14 16 22 24 30 32 42 44 46 48

PID,j- 59.36% 61.32% 54.22% 57.16% 59.36% 61.32% 54.22% 57.16% 59.34% 57.05% 60.14% 60.40%
60.44%

Swapped Tracks 61.42% 65.76% 59.09% 61.58% 61.42% 65.76% 59.09% 61.58% 61.45% 65.18% 61.65% 65.49%
PID,j- 61.25% 59.22% 57.99% 54.64% 61.25% 59.22% 57.99% 54.64% 60.74% 59.56% 61.30% 58.98%

61.57%
Non-swapped Tracks 65.20% 65.63% 61.57% 62.47% 65.20% 65.63% 61.57% 62.47% 64.88% 65.61% 65.00% 65.68%

PID,j 61.08% 59.41% 57.65% 54.87% 61.08% 59.41% 57.65% 54.87% 60.61% 59.33% 61.19% 59.11%
61.47%

64.86% 65.65% 61.35% 62.39% 64.86% 65.65% 61.35% 62.39% 64.57% 65.57% 64.70% 65.66%
Passoc,j 71.83% 72.02% 72.17% 72.27% 71.83% 72.02% 72.17% 72.27% 71.98% 71.81% 71.80% 72.08%

71.77%
71.38% 71.19% 71.88% 71.89% 71.38% 71.19% 71.88% 71.89% 71.54% 71.38% 71.34% 71.23%

Pdeclare,j|assoc,j 94.95% 93.06% 89.33% 88.18% 94.95% 93.06% 89.33% 88.18% 94.25% 92.64% 95.18% 93.09%
93.24%

95.74% 96.75% 89.90% 91.37% 95.74% 96.75% 89.90% 91.37% 94.92% 96.58% 95.64% 96.77%
PID,j|declare,j 89.54% 88.67% 89.07% 86.07% 89.54% 88.67% 89.07% 86.07% 89.31% 89.21% 89.53% 88.14%

91.80%
94.90% 95.31% 94.91% 94.97% 94.90% 95.31% 94.91% 94.97% 95.02% 95.11% 94.81% 95.26%

PID,j 61.08% 59.41% 57.65% 54.87% 61.08% 59.41% 57.65% 54.87% 60.61% 59.33% 61.19% 59.11%
61.47%

Average 64.86% 65.65% 61.35% 62.39% 64.86% 65.65% 61.35% 62.39% 64.57% 65.57% 64.70% 65.66%
PID,j 61.08% 57.65% 61.08% 57.65% 60.61% 61.19%

61.75%
Original 64.86% 61.35% 64.86% 61.35% 64.57% 64.70%
PID,j 59.41% 54.87% 59.41% 54.87% 59.33% 59.11%

61.19%
Filtered 65.65% 62.39% 65.65% 62.39% 65.57% 65.66%

PD 68.80% 40.76% 68.57% 39.19% 68.80% 40.76% 68.57% 39.19% 68.79% 40.69% 68.74% 40.65% 54.46%
PFA 12.32% 1.70% 10.19% 1.16% 12.32% 1.70% 10.19% 1.16% 12.28% 1.68% 12.32% 1.68% 6.56%
EWA 80.64% 81.92% 84.76% 85.48% 80.64% 81.92% 84.76% 85.48% 80.80% 82.10% 80.61% 81.87% 82.58%

PD Average 68.80% 40.76% 68.57% 39.19% 68.80% 40.76% 68.57% 39.19% 68.79% 40.69% 68.74% 40.65% 54.46%
PFA Average 12.32% 1.70% 10.19% 1.16% 12.32% 1.70% 10.19% 1.16% 12.28% 1.68% 12.32% 1.68% 6.56%
PD Original 68.80% 68.57% 68.80% 68.57% 68.79% 68.74% 68.71%
PD Filtered 40.76% 39.19% 40.76% 39.19% 40.69% 40.65% 40.21%

PFA Original 12.32% 10.19% 12.32% 10.19% 12.28% 12.32% 11.61%
PFA Filtered 1.70% 1.16% 1.70% 1.16% 1.68% 1.68% 1.51%

Figure 4.19: Ensemble statistics for SOM configuration set A, B, C, D, and E using scenario 2 and truth trajectories for
class ID 17 and 32.
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Statistic Percent +/– for Configurations Average

A B C D F

6 8 14 16 22 24 30 32 42 44 46 48

PID,j- 72.56% 78.26% 57.63% 66.16% 72.56% 78.26% 57.63% 66.16% 72.50% 65.83% 74.83% 75.58%
75.44%

Swapped Tracks 78.05% 90.63% 71.30% 78.51% 78.05% 90.63% 71.30% 78.51% 78.13% 88.95% 78.73% 89.85%
PID,j- -11.26% -14.20% -15.99% -20.83% -11.26% -14.20% -15.99% -20.83% -12.00% -13.71% -11.19% -14.55%

-7.70%
Non-swapped Tracks 0.74% 1.41% -4.87% -3.48% 0.74% 1.41% -4.87% -3.48% 0.25% 1.37% 0.44% 1.48%

PID,j -7.33% -9.86% -12.53% -16.74% -7.33% -9.86% -12.53% -16.74% -8.03% -9.97% -7.15% -10.31%
-3.67%

4.61% 5.88% -1.05% 0.63% 4.61% 5.88% -1.05% 0.63% 4.15% 5.76% 4.36% 5.91%
Passoc,j -0.54% -0.29% -0.08% 0.06% -0.54% -0.29% -0.08% 0.06% -0.34% -0.57% -0.58% -0.20%

2.43%
4.93% 4.66% 5.68% 5.69% 4.93% 4.66% 5.68% 5.69% 5.18% 4.94% 4.88% 4.72%

Pdeclare,j|assoc,j -5.05% -6.94% -10.67% -11.82% -5.05% -6.94% -10.67% -11.82% -5.75% -7.36% -4.82% -6.91%
-6.76%

-4.26% -3.25% -10.10% -8.63% -4.26% -3.25% -10.10% -8.63% -5.08% -3.42% -4.36% -3.23%
PID,j|declare,j -1.87% -2.82% -2.38% -5.67% -1.87% -2.82% -2.38% -5.67% -2.12% -2.23% -1.87% -3.40%

0.66%
4.09% 4.54% 4.10% 4.17% 4.09% 4.54% 4.10% 4.17% 4.23% 4.32% 3.99% 4.49%

Figure 4.20: Percent +/− from kinematic-only configuration 4 to SOM hyperspectral-augmented tracking configuration
sets A, B, C, D, and E using scenario 2 and truth trajectories for class ID 17 and 32.
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Statistic Average

Kinematic-Only SOM Percent +/–

PID-
26.16% 54.22% 121.48%

Swapped Tracks
PID-

62.65% 54.13% -13.82%
Non-swapped Tracks

PID 46.36% 54.39% 28.11%

Passoc 64.55% 66.55% 3.25%

Pdeclare|assoc 100.00% 92.32% -7.68%

PID|declare 70.25% 88.22% 34.35%

Table 4.7: Ensemble statistics and percent +/− for all kinematic-only and SOM
configurations.

Statistic Average

Original Filtered Percent +/-

PID 53.53% 57.03% 6.54%
PD 75.84% 63.49% -16.29%
PFA 13.47% 2.39% -82.26%
EWA 81.40% 86.75% 6.57%

Table 4.8: Ensemble statistics and percent +/− for original SOM and filtered SOM
configurations.

Statistic Average

Original SOM FCM Filtered SOM

PID 53.53% 55.32% 57.03%
PD 75.84% 64.55% 63.49%
PFA 13.47% 13.68% 2.39%

Table 4.9: Ensemble statistics for original SOM, FCM, and filtered SOM configu-
rations.
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4.5 Summary

This chapter provides not only the experimental design used in this research, but

also the quantitative results of the simulations. The performance measures of Sec. 3.9

are calculated in order to compare the performance between kinematic-only and

hyperspectral-augmented tracking. As the quantitative results show, hyperspectral-

augmented tracking outperforms kinematic-only tracking with a resounding success.

The next chapter provides the final analysis of the quantitative results and addresses

the shortcomings and assumptions in the methodology and experimental design. Fur-

thermore, based on research goals achieved, it provides a future perspective on this

research work and outline recommendations for future research.
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V. Conclusions

This chapter discusses the research conclusions and major result trends. It an-

swers the question: When augmented by hyperspectral data, is the performance

of the kinematic-only tracker in ambiguous situations improved? with a resounding

yes. As discussed in Sec. 4.4, the hyperspectral-augmented tracker outperformed the

kinematic-only tracker with an overall average of 123.14% PID for swapped tracks.

Within the bounds of the methodology and experimental design, the results show

great promise, and as long as the effects that were ignored in the experiments (e.g.,

parallax, false alarm, and image registration errors) are addressed and accounted for,

the methods developed in this research can be extended to real data.

The hyperspectral-augmented tracking system presented a novel approach to

feature-aided single hypothesis tracking. Spectral gating work developed a novel

method for calculating the nearest neighbors of a target class. The observation-

to-track association gates a hyperspectral observation using the nearest neighbors of

the track’s class ID, thus reducing computational complexity. It is common for an

HSI chip to have more than ten hyperspectral observations, and if three target tracks

exist, the number of operations amounts to 1,000 (as compared to 27 operations for

three observations and three tracks).

The hyperspectral observation-to-track association offers an innovative method

for representing the cost function. Instead of using the conventional approach used

in a typical multi-target tracking system (i.e., the kinematic Mahalanobis distance),

this research uses a sum of weighted kinematic and spectral distances. Since the two

distances are highly correlated, results show that the weighting factor γ does not

make a difference on the outcome of the observation-to-track association. This can be

attributed to the spectral gating that occurs prior to the assignment process (i.e., the

spectral signature of the observations are spectrally similar to the spectral signature

of the track).

The concepts applied in this research are very effective. As compared to the

fuzzy c-means (FCM), the use of the self-organizing map (SOM) as a classification ap-
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proach is an excellent choice. It has a reduced computational cost, allows for real-time

processing of hyperspectral data, is effective at organizing noisy data, and provides

convenient processing (i.e., morphological operations) of high-dimensional data in a

two-dimensional space. Based on the results, the SOM-based classifier is highly ef-

fective in dealing with mixed spectra, specifically the filtered map configuration. For

each vehicle class, the samples at the tail of the distribution are assumed highly influ-

enced by background spectra. The filtering method removes these samples from the

distribution, reducing the misclassification errors.

Analysis of the two hyperspectral sensor modes (Pushbroom versus Region-of-

Interest scanning) can drive future design of hyperspectral sensors. An innovative

approach is the ROI hyperspectral line scanning, which uses of the track’s kinematic

information and process statistics to steer the mirror to locations of existing tracks.

This implementation increases the track’s revisit rates. Results show that the ROI

scanner type outperforms the typical Pushbroom mode by an average of 6% PID.

5.1 Future Work

This thesis effort has shown the feasibility of the hyperspectral-augmented track-

ing system. The potential for this capability definitely exists, and more work can be

performed to refine and improve the methodology and experimental design used in

this research.

Future efforts include the addition of more sophisticated track management

techniques, such as a multiple hypothesis tracker (MHT). Since the observations used

by the tracker in the simulations are devoid of clutter or false alarms, a single hy-

pothesis tracker (SHT) suffices. However, these issues are unavoidable when working

with real data. An MHT is more robust since it forms hypotheses of the potential

outcomes and defers a decision until after subsequent data allow it to resolve the un-

certainty. Hence, an MHT can better deal with spurious observations than an SHT.

Spectral gating is another area where MHT is more advantageous. For example, if

one vehicle becomes occluded (e.g., under a bridge) and a second vehicle comes out
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of the occlusion (heading in the same direction as the first vehicle), the tracker will

likely “latch” onto the second vehicle. Assuming the hyperspectral signature of the

second vehicle is outside of the gate of the existing track, the associator ignores the

hyperspectral observation generated by the second vehicle. Hence, the hyperspectral-

augmented tracker does not update the class ID of the track. If MHT is used in this

scenario, it will create another hypothesis for the second vehicle and defer the decision

on which class ID to update the track until it receives more observations. Another

example deals with the SOM. If two or more classes that are mapped to the best

matching neuron equally have the highest density, an MHT can be implemented so

that the decision on which class to assign to the unclassified pixel can be deferred until

additional observations are received and the uncertainty can be resolved. The MHT

method forms a hypothesis for each potential class and propagates each hypothesis

until subsequent data satisfy a decision logic.

Other classification approaches can also be investigated. Effective methods for

decision boundary approximation include those based on Kohonen’s Learning Vector

Quantization 2.1 and variants (e.g., Generalized LVQ [34], Generalized Relevance LVQ

(GRLVQ) [17], and GRLVQ-Improved [28]). The advantage of these methods is that

they learn decision boundaries between the current class and its nearest neighbors

in distribution, potentially allowing for a better classification. Note that it might be

best to use the filtered SOM as a preprocessing step in order to provide good quality

samples for classification. Otherwise, the extreme target and background mixtures

will degrade the classification.

The framework for track maintenance of static targets already exists in this re-

search. Track maintenance uses hyperspectral detections to initiate or delete “tracks.”

Doing so, targets do not have to be in motion to be monitored. Current implementa-

tion only allows for track maintenance on potential targets that happen to be in the

scan region of the hyperspectral sensor. This can be modified so that the sensor not

only scans existing track regions, but also takes advantage of contextual aspects of

5-3



the scene (e.g., parking lots and other roadways) in order to identify and track static

targets.

The approach used in calculating the spectral Mahalanobis distance for the

hyperspectral observation-to-track association assumes a Gaussian distribution among

the image bands of the hyperspectral data. This is a limitation, since the image bands

do not actually have a Gaussian distribution. Additional work is needed to better

determine an accurate representation of this distance. Based on the results, another

option is to simply remove this distance since the kinematic and spectral distances

are highly correlated, the kinematic distance is sufficient and can be used as the cost

function for the hyperspectral observation.

Unmixing algorithms that extract the constituent spectra comprising a pixel

can also be investigated. For example, a linear mixing model provides an estimation

of the abundances of materials present in the pixel region. This can be incorporated

to better identify the targets of interest in the imaged scene.

5.2 Concluding Remarks

As the nature of military warfare continues to evolve, the United States Air

Force is at the leading edge of providing American forces on the ground with vital,

timely, and accurate information in order to accomplish their missions. Persistent

tracking of enemy forces is a critical intelligence, surveillance, and reconnaissance need

in this ever-changing battlefield—urban environments that have no clearly defined

demarcations, where the enemy fights with no rules of engagement. This research

offers a means for persistent vehicle recognition and monitoring in such a battlefield

through the employment of a a highly effective feature-based tracking paradigm based

on hyperspectral imagery.

5-4



Bibliography

1. “United States Air Force Basic Doctrine, Air Force Doctrine Document 1”.
November 2003.

2. Arambel, Pablo O., Jeff Silver, Jon Krant, Matthew Antone, and Thomas Strat.
“Multiple-Hypothesis Tracking of Multiple Ground Targets from Aerial Video
with Dynamic Sensor Control”. The International Society for Optical Engineer-
ing, 5429:23–32, August 2004.

3. Bar-Shalom, Yaakov and Xiao-Rong Li. Multitarget-Multisensor Tracking: Prin-
ciples and Techniques. Yaakov Bar-Shalom, Storrs, Connecticut, 1995.

4. Bertsekas, Dimitri P. “The Auction Algorithm: A Distributed Relaxation Method
for the Assignment Problem”. Annals of Operations Research, 14(1):105–123,
December 1988.

5. Bevilacqua, Alessandro, Luigi Di Stefano, and Stefano Vaccari. “Occlusion Robust
Vehicle Tracking based on SOM (Self-Organizing Map)”. IEEE Workshop on
Motion and Video Computing, volume 2, 84–89. January 2005.

6. Blackburn, Joshua, Michael Mendenhall, Andrew Rice, Paul Shelnutt, Neil Soli-
man, and Juan Vasquez. “Feature Aided Tracking with Hyperspectral Imagery”.
Oliver E. Drummond and Richard D. Teichgraeber (editors), Signal and Data
Processing of Small Targets. September 2007.

7. Blackman, Samuel. Multiple Target Tracking with Radar Applications. Artech
House, 685 Canton St. Norwood, MA 02062, 1986.

8. Blackman, Samuel and Robert Popoli. Design and Analysis of Modern Tracking
Systems. Artech House, 685 Canton St. Norwood, MA 02062, 1999.

9. Buchan, Glen. Nuclear Weapons and U.S. National Security Strategy for a New
Century, chapter 7, 225–282. Khalilzad and Shapiro [21], 2003.

10. Campbell, James B. Introduction to Remote Sensing. The Guilford Press, fourth
edition, 2007.

11. Clark, R. N., G. A. Swayze, R. Wise, K. E. Livo, T. M. Hoefen, R. F. Kokaly,
and S. J. Sutley. “USGS Digital Spectral Library”. http://speclab.cr.usgs.gov/
spectral lib.html, 2003.

12. Demuth, Howard, Mark Beale, and Martin Hagan. Neural Network Toolbox 5
User’s Guide. The MathWorks, Inc., 2007.

13. Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification.
John Wiley and Sons, Inc., second edition, 2001.

14. “ENV transfer Angel Fire Project to AFRL”. The Envoy, 1(1):5, Fall 2006.

BIB-1



15. Green, R. O. “Summaries of the 6th Annual JPL Airborne Geoscience Workshop,
1. AVIRIS Workshop”. Pasadena, CA, Mar 4–6 1996.

16. Guo, Yanlin, Steve Hsu, Ying Shan, Harpreet Sawhney, and Rakesh Kumar. “Ve-
hicle Fingerprinting for Reacquisition and Tracking in Videos”. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, volume 2, 761–
768. June 2005.

17. Hammer, B. and T. Vilmann. “Generalized Relevance Learning Vector Quanti-
zation”. Neural Networks, volume 15, 1059–1068. 2002.

18. Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning. Springer, 2001.

19. Jolliffe, I. T. Principal Component Analysis. Springer, second edition, 2002.

20. Kerekes, John, Michael Muldowney, Kristin Strackerjan, Lon Smith, and Brian
Leahy. “Vehicle Tracking with Multi-temporal Hyperspectral Imagery”. Proceed-
ings of the SPIE, volume 6233. June 2006.

21. Khalilzad, Zalmay and Jeremy Shapiro (editors). Strategic Appraisal: United
States Air and Space Power in the 21st Century. RAND, 2002.

22. Kohonen, Tuevo. Self-Organizing Maps. Springer, third edition, 2001.

23. Landgrebe, David. “Hyperspectral Image Data Analysis”. IEEE Signal Processing
Magazine, 19(1):17–28, January 2002.

24. Lillesand, Thomas M. and Ralph W. Kiefer. Remote Sensing and Image Inter-
pretation. John Wiley & Sons, Inc., 4 edition, 2000.

25. The MathWorks, Inc. Getting Started with Matlab
r 7, September 2007.

26. The MathWorks, Inc. Statistics Toolbox 6 User’s Guide, September 2007.

27. Maybeck, Peter S. Stochastic Models, Estimation, and Control, volume 1. Navtech
Book and Software Store, 1994.
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